

Unmixing before Fusion: A Generalized Paradigm for Multi-Source-based Hyperspectral Image Synthesis

Yang Yu*, Erting Pan*, Xinya Wang, Yuheng Wu, Xiaoguang Mei[†], Jiayi Ma

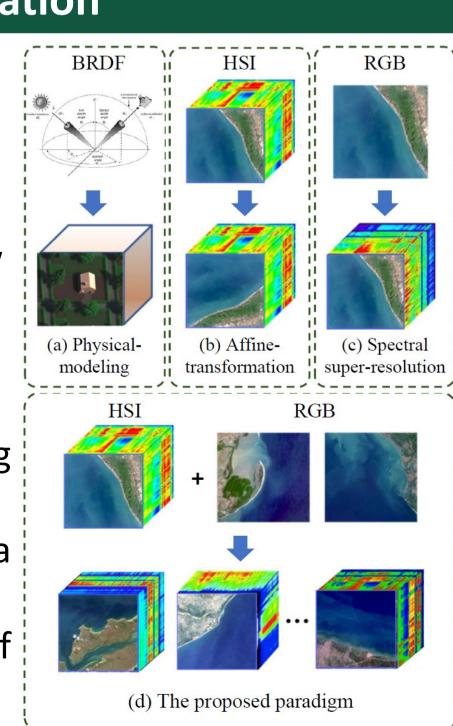
Summary

Challenge

The severe data scarcity in hyperspectral images (HSIs).

Contribution

- Formulate a generalized paradigm for multi-sourcebased HSI synthesis, incorporating a series of deep generative models.
- Pioneer to synthesis abundance (low-dimensional) instead of HSI sample (high-dimensional).
- Incorporate multi-source data to alleviate the issue of limited sample availability.


Motivation

Limitations of prior work

- Lack of authenticity
- Restricted diversity
- Inability to produce new HSI samples

New paradigm

- Customizing the unmixing across different scenes
- Introducing auxiliary data from multi-source
- Integrating a series of generative AI models

Method: Unmixing before Fusion

Key observation

share scenes common low-rank features that can be described by a endmembers, while differences between scenes can be captured in their abundance maps.

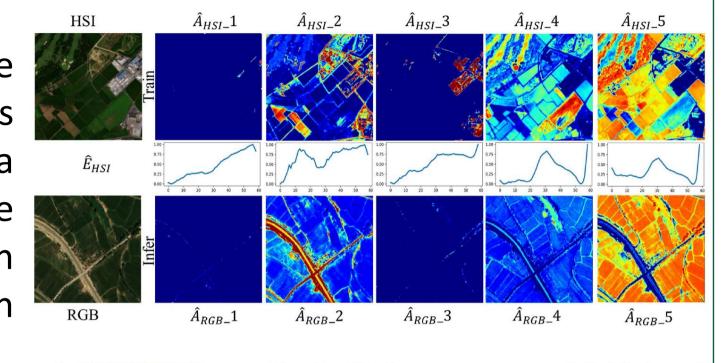
Pipeline overview

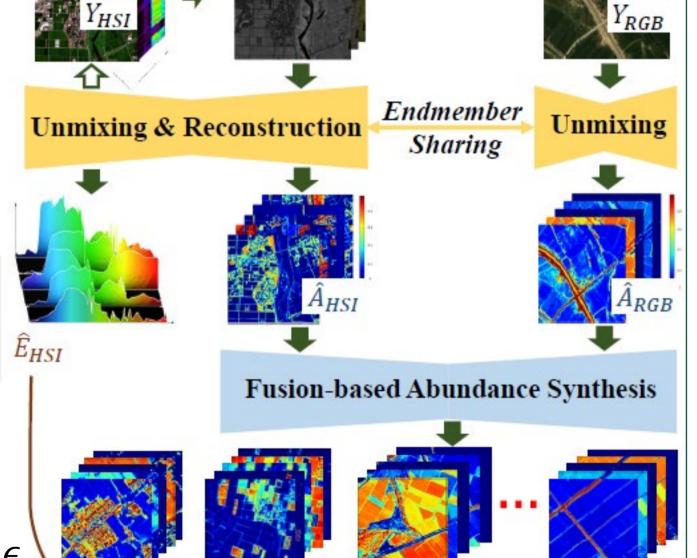
 Unmixing across multisource data

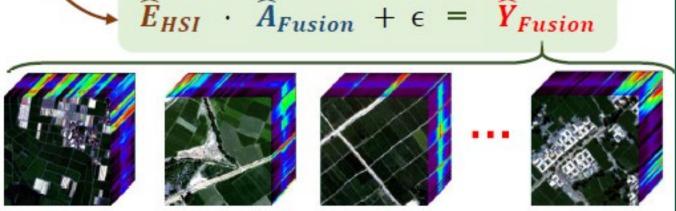
$$\hat{E}_{HSI}, \hat{A}_{HSI} = \mathcal{U}(\Psi(Y_{HSI}))$$

$$\hat{A}_{RGB} = \mathcal{U}(Y_{RGB}, \hat{E}_{HSI})$$

 \widehat{E} : endmember; \widehat{A} : abundance; Y: Input; $\Psi(\cdot)$: band selection; $\mathcal{U}(\cdot)$: the trained unmixing network.


Fusion-based synthesis


$$\hat{A}_{Fusion} = \mathcal{G}(\hat{A}_{RGB}, \hat{A}_{HSI})$$


 $Y_{Fusion} = E_{HSI} \cdot A_{Fusion} + \epsilon$

 $\mathcal{G}(\cdot)$: the generative AI model.

Generating a vast quantity of diverse, reliable, and highfidelity synthetic HSI samples.

Ablation on unmixing

- Synthesizing from the abundance can largely alleviate the difficulties in highdimensional cube space.
- Synthesizing with HSI datasets alone generate results in monotonous.

Ablation on fusion

ps: Please see more results/ ablations in our paper.

Synthesis results

Results

Validation on downstream tasks

Generated HSI

Augmentation	Training set scale	AlexNet	VGG-16	ResNet-18
X	761	89.51%	87.30%	37.14%
Affine Trans.	4k	91.11%	88.84%	41.75%
Our UBF	4k	92.70%	93.97%	44.33%
Our UBF	8k	94.29%	94.60%	45.76%

Check out the project website!

yuyang1995@whu.edu.cn

panerting@whu.edu.cn