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A B S T R A C T

Nowadays, data is of paramount importance for artificial intelligence. However, collecting real-world hy-
perspectral images (HSIs) with desired characteristics and diversity can be prohibitively expensive and
time-consuming, leading to the data scarcity issue in HSI, and further limiting the potential of deep learning-
based HSI applications. Existing work to tackle this issue fails to generate abundant, diverse, and reliable
synthetic HSIs. This work proposes a multi-modal scene fusion-based method that diffusion from the abundance
perspective for HSI synthesis, termed MSF-Diff. Concretely, highlights involve: (1) Synthesis in low-dimensional
abundance space, other than original high-dimensional HSI space, greatly releases the difficulty; (2) Integration
of multi-modal data greatly enriches the diversity of spatial distribution that the model can perceive;
(3) Incorporation of the unmixing concept ensures that the generated synthetic HSI has reliable spectral
profiles. The proposed research can generate a vast amount of HSI with a rich diversity in various categories
and scenes, closely resembling realistic data. It plays a pivotal role in ensuring that the model produces reliable
results and can be trusted for real-world applications. The code is publicly available at https://github.com/
EtPan/MSF-Diff.
. Introduction

Hyperspectral image (HSI), spanning the ultraviolet, visible, and
nfrared spectral ranges with high spectral resolution, has emerged as
powerful tool for target identification and anomalous material detec-

ion, among other applications. With the advent of artificial intelligence
AI), HSIs can bring about a technique reformation in a range of fields,
ncluding environmental monitoring, damage assessment, disease diag-
osis, and agriculture [1–3]. However, the effective application of AI
o HSI relies heavily on an adequate volume of high-quality data.

With the continuous advancement of sensor technology, more space-
orne and airborne hyperspectral imaging sensors have been signifi-
antly increased [4–6]. However, the following issues remain. First,
s a result of the complex and sensitive imaging process along with
he limitations inherent in the imaging system, real-world HSIs are
argely imperfect, characterized by restricted resolution or various
egradation, thereby impeding their practical value [7–9]. Second, cap-
uring HSIs with hundreds of spectral bands demands specialized and
xpensive sensors beyond the scope of conventional imaging systems.
ue to the huge expenses associated with such high-dimensional data
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collection, transmission, and storage, constructing a desirable large-
scale HSI dataset still poses a considerable financial challenge [10,11].
Thirdly, current spaceborne sensors operating in routine revisit mode
have the capability to collect vast amounts of HSIs. Nevertheless, when
it comes to a specific task or application, most of these HSIs are irrele-
vant and meaningless, and sifting through all these data for useful ones
can be laborious and time-consuming again [12,13]. Consequently, the
availability of manually annotated HSI datasets is still limited, and they
are often small, not very representative, extremely imbalanced, and po-
tential inclusion of noisy labels [5,11,14]. The scarcity of high-quality
and usable HSIs persists as a pressing concern [15,16].

To meet the ever-growing demands of large volumes and high-
quality HSIs, researchers have been actively conducting investigations
in various avenues [17–19]. Previous studies can be taxonomized into
three categories: simulation, augmentation, and reconstruction. A suc-
cinct overview of the definition and representative works related to
each category are outlined in Table 1. Simulation mainly depends on
empirical or statistical models rooted in the physical imaging process to
generate HSIs with radiometric and spatial accuracy [20–23]. It should
be noted, however, that each simulation model is typically tailored
vailable online 10 April 2024
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Table 1
Taxonomy of existing solution for data scarcity in HSIs.

Solution Definition Representative works Drawbacks

Simulation Model the physical imaging process with
ray-tracing, radiative transfer, atmosphere
calculation, etc.

DIRSIG [20], DART [21],
BOA-TOA [22], NNE-S2 [23]

Designed for specific
imaging system

Augmentation Modify existing data with minor changes, i.e.,
geometric transformations, random mask, etc.

Random Occlusion [24], SSDDA
[25], FPGANDA [26],
Flexible-Mixup [27]

Limited diversity

Reconstruction Enhance/restore incomplete or degraded data,
i.e., limited spatial/spectral resolution, noisy
corruption, missing information, etc.

MST++ [28], PoNet [29],
3DT-Net [30], STP-SOM [31],
T3SC [32], SLDR [34]

Fail to generate new
HSI samples
towards a specific imaging system, thereby restricting its applicability
in a broader context. Augmentation techniques apply various trans-
formations to the original data to expand the size of training HSI
samples [24–27]. However, the augmented dataset is constrained by
the original training data and its quality and diversity. Reconstruction
methods recreate each HSI based on corresponding imperfect real-
world data to improve the quality and usability of the given data [28–
33]. Regrettably, reconstruction-based approaches fall short of gener-
ating entirely new HSIs. More detailed literature reviews can refer to
Section 2.1.

On the other hand, with the rapid development of AI, genera-
tive AI offers a promising solution to this data scarcity issue in the
realm of HSI [35]. Various techniques, such as Variational Autoencoder
(VAE) [36,37], Generative Adversarial Network (GAN) [38,39], Nor-
malizing Flow (Flow) [38,39], and the advanced Denoising Diffusion
Probabilistic Model (DDPM) [40–42], have been extensively explored.
These methodologies have demonstrated the capability to generate
synthetic data in different modalities, including text, audio, and image.
Nevertheless, the high dimensionality of spectral signatures in HSI
poses a significant barrier to the effective utilization of generative
AI methods for data synthesis. The complexity of models escalates
proportionally with the image dimensions, making the synthesis of HSIs
a challenging and computationally demanding task. Furthermore, the
training of robust and dependable generative AI models mandates a
substantial quantity of high-quality training data, a requirement that
current HSI datasets are unable to meet. Consequently, research in this
particular domain has been constrained by the complexities linked to
high-dimensional data and the limited availability of HSI datasets.

To this end, this work shifts the perspective of HSI synthesis from
the high-dimensional cube to the low-dimensional abundance and in-
corporates more easily accessible RGB images. A novel multi-modal
scene fusion method that diffusion from the abundance, termed as
MSF-Diff, is proposed for HSI synthesis. MSF-Diff organizes a three-
phase pipeline that includes scene-based unmixing, abundance-based
diffusion, and fusion-based generation to generate large volumes of
high-quality HSIs that exhibit satisfactory diversity and reliability,
closely resembling real-world data in terms of various categories and
scenes. In concrete, MSF-Diff firstly leverages the concept of HSI un-
mixing, which decomposes individual HSI cubes into endmembers that
hold physical significance, along with corresponding abundance maps
that delineate their spatial distributions. Based on this, we introduce
external RGB images that cover similar scenes and propose scene-based
unmixing across multi-modal data to extract reliable shared endmem-
bers from real-world HSIs and map HSI and RGB to the same low-
dimensional abundance space. Next, with abundant and various spatial
distributions from real-world RGB images, we train an abundance-
based diffusion model to generate synthetic abundance maps. Finally,
we fuse the shared endmembers estimated from HSI and synthetic
abundance maps generated based on RGB to produce new synthetic
HSI samples. The proposed MSF-Diff provides a more comprehensive
and accurate method for HSI synthesis, offering a promising avenue
for advancing research in the field.
2

The contributions can be summarized below.
• Incorporate the unmixing process and construct scene-based un-
mixing, empowering the perspective of HSI synthesis from the
high-dimensional cube shifting to the low-dimensional abundance
and deriving endmembers with reliable physical signatures.

• Integrate external RGB images and design abundance-based dif-
fusion, providing the model with sufficient information about the
distribution of real scenes in an economical and reliable manner
and generating a large volume of synthetic abundance.

• Fuse the shared endmembers estimated from HSI and synthetic
abundance maps generated based on RGB, producing new syn-
thetic HSI samples with reliable spectral profiles and reasonable
spatial distributions.

• To the best of our knowledge, there is no existing work for
multi-modal fusion-based HSI synthesis. The underlying benefits
of overcoming this matter are remarkable, as it has the potential
to revolutionize a range of fields.

2. Related work

2.1. Existing hyperspectral image synthesis techniques

As listed in Table 1, existing techniques involve simulation, augmen-
tation, and reconstruction. Each category has its unique characteristics
and limitations.

Simulation-based methods mainly simulate airborne or spaceborne
imaging systems using empirical or statistical models. For instance,
digital imaging remote sensing image generation (DIRSIG) tool utilizes
an end-to-end ray tracing physical model to calculate scattered radiance
by analyzing the surface properties of objects. It can be configured
to simulate the functionality of the airborne hyperspectral instrument
AVIRIS [20]. Discrete anisotropic radiative transfer (DART) model
accounts for BRDF effects in Earth-atmosphere radiation interaction
within heterogeneous 3-D scenes, enabling forward simulations of satel-
lite reflectance images and LiDAR [21]. The neural network emulator
learns statistically the nonlinear relationships between the hyperspec-
tral airborne sensor HyPlant and multispectral satellite Sentinel-2 (S2)
to produce a realistic hyperspectral S2-like datacube [23]. Significantly,
a huge amount of time and effort is required to construct the ap-
propriate setting and computational capacity essential for the precise
rendering of synthetic HSIs. Furthermore, the efficiency of these models
is greatly reliant on specific essential parameters, necessitating the need
to parameterize models tailored to different imaging systems.

Augmentation-based techniques have been frequently utilized in
numerous studies, particularly those addressing the challenge of limited
labeled samples in enhancing the performance of machine learning
models for HSI classification or target recognition. These techniques
typically involve the modification of existing HSI samples through
geometric transformations such as scaling, rotation, and shearing [25];
spatial transformations including random occlusion or noise [24]; as
well as the mixup of two or more strategies [26,27]. Despite effectively
increasing the data volume, augmentation often lacks in augmenting
the dataset’s diversity or variety. This limitation stems from the fact

that the transformations implemented do not introduce novel features
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or attributes but instead only modify existing ones, resulting in an
over-emphasis on certain features while neglecting others. Hence, while
such augmentations can offer a temporary remedy to data scarcity in
quantity, their capacity to enhance the overall quality and diversity of
HSIs remains constrained.

Reconstruction-based methods are often anchored in the enhance-
ment or restoration of existing data. Largely real-world data exhibits
imperfections, such as limited spatial or spectral resolution due to the
imaging system, or degradation from low-light or noisy conditions.
Research efforts have been made in areas such as spectral superreso-
lution [28,29], spatial superresolution [30], image enhancement [31,
33], and denoising [34]. Undoubtedly, these endeavors have led to
advancements in the quality and usability of the data at hand. Nev-
ertheless, these methods come with inherent limitations. Primarily,
they may struggle to fully restore the original data’s spectral signa-
tures, particularly with materials possessing complex or unique spectral
characteristics. This can result in synthetic HSIs lacking reliability.
Additionally, these methods are not inherently capable of producing
entirely new HSI samples, thus providing only limited assistance in
diversifying hyperspectral datasets.

2.2. Generative AI-based image synthesis

As a trending area, image synthesis has gained significant attention
over the past decade. The primary goal is to create new, realistic
images or modify existing ones while preserving natural textures and
nuances. In the last few years, it has witnessed very impressive progress
thanks to the advance of generative AI, especially deep generative
models [43,44].

GANs [45–48] have been at the forefront of the image synthesis
revolution. GANs consist of two neural networks, a generator and a
discriminator, which compete against each other in a zero-sum game
scene. The generator’s goal is to create images that the discriminator
cannot distinguish from real images, thereby enhancing the generator’s
ability to produce high-quality synthetic images. The discriminator, on
the other hand, attempts to distinguish the synthetic images from the
real ones. While GANs have produced impressive results in terms of
the perceptual quality of synthetic images, they are known for their
training instability. Balancing the generator and discriminator can be
a significant challenge as an overly powerful discriminator can cause
the generator to fail, and vice versa. As a result, GANs often require
careful hyperparameter tuning and can exhibit mode collapse where
they generate a limited variety of images.

VAEs [49–51] represent another significant advancement in the
field of image synthesis. VAEs belong to a class of generative models
that are trained to learn the underlying probability distribution of
the training data, allowing them to generate new data points with
similar properties. VAEs have shown promise in terms of optimiza-
tion performance and distribution estimation. They provide a lower-
bound estimate of the data likelihood, which can be optimized directly.
However, VAEs have been criticized for their tendency to produce
blurry images, which is often attributed to the use of a pixel-wise
reconstruction loss.

More recently, diffusion models [52,53] have emerged as a powerful
tool for image synthesis. These models capture the data distribution
by modeling it as a diffusion process, which gradually transforms a
simple initial distribution into the target distribution. Diffusion models
offer several desirable properties, such as a clear training objective,
model stability, and easy extensibility. They have achieved state-of-the-
art results in various image synthesis tasks, outperforming both GANs
and VAEs. However, training diffusion models can be computationally
intensive and slow due to the iterative nature of the diffusion process.
To address the computational challenges associated with training dif-
fusion models, some researchers have proposed a two-stage synthesis
framework [54,55]. They combine a compression stage, which projects
raw images into a lower-dimensional latent space, with a generative
3

Fig. 1. (a) Illustration of the formation of a mixed pixel in HSI imaging. (b) Illustration
of decomposing HSI into endmember signatures and abundance maps by unmixing.

stage, which generates new images from the latent representations.
While this approach can significantly reduce computational complexity,
the quality of the synthetic images depends heavily on the performance
of both the compression and generative models. Any deficiencies in
either model can negatively impact the final result.

While deep learning and generative AI have been successful in syn-
thesizing RGB images, their application in HSI synthesis remains largely
unexplored. This gap indicates a substantial potential for breakthroughs
in this field. The generation of high-quality HSIs is a challenging task,
necessitating innovative research efforts. Given the limited progress
and inherent challenges in existing HSI synthesis techniques, our re-
search aims to leverage the strengths of deep learning and generative
AI. We strive to develop novel techniques tailored for HSI synthesis,
aiming to enhance the diversity of HSIs, streamline the synthesis pro-
cess, and improve the quality of synthetic images. Our research will
provide a valuable contribution to the field of HSI synthesis, potentially
leading to significant advancements.

3. Motivation

This work is motivated by HSI unmixing. As depicted in Fig. 1(a),
scene information is collected by remote sensing HSI imaging systems.
Typically, the corresponding ground sampling distance, which is the
distance between the centers of two neighboring pixels measured on
the ground, can easily reach tens of meters. Consequently, one pixel
in the HSI may consist of several substances, forming a mixed pixel
with an observed spectral curve. It has brought about the emergence
of HSI unmixing [56,57], which, as depicted in Fig. 1(b), decomposes
the scene into multiple endmember signatures and their corresponding
abundance maps. In light of this, HSI unmixing, by quantifying the
various substances (endmembers) and their corresponding spatial dis-
tribution (abundances) that constitute a given scene, stands out as an
immensely valuable technique for reducing data dimensionality. More-
over, the endmembers and abundances derived from HSI unmixing
possess discernible physical meanings.

In this work, we endeavor to generate new HSIs by combining end-
members estimated by unmixing and synthetic abundances generated
by abundance-based diffusion. It offers two significant advantages: (1)
By reducing the dimension of the generation space from hundreds of
spectral channels to an infinite number of endmembers, it alleviates the
high-dimensional dilemma and decreases the difficulty of HSI diffusion.
(2) Using endmembers estimated from real HSIs ensures the reliability
of the spectral profile of the synthetic HSIs.

Besides, as previously mentioned, off-the-shelf HSI datasets are
plagued by skewed class distribution [58,59], leading to overfitting on
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Fig. 2. The proposed pipeline for generating synthetic HSIs using a multi-modal scene fusion-based method. The pipeline involves three main steps: scene-based unmixing with
training via the unmixing flow and inferring via the inferring flow, abundance-based diffusion via the diffusion flow, and fusion-based generation via the generation flow.
majority classes and inferior performance on minority classes. More-
over, if biases exist in the original datasets, any new data generated
from them will inherently perpetuate these biases. Intuitively, to ad-
dress this issue, this study proposes integrating external datasets that
contain more diverse and accessible natural RGB images. By assum-
ing that images of different modalities in similar scenes share repre-
sentative endmembers but with characterized abundances, the study
proposes a scene-based unmixing to infer the abundance maps of RGB
images. With auxiliary RGB datasets, the proposed method can perceive
a large and diverse object distribution. Combined with the aforemen-
tioned abundance-based diffusion model, it can generate diversified
synthetic abundances, alleviating the issue of limited diversity.

Overall, our approach combines scene-based unmixing, abundance-
based diffusion, and multi-modal fusion to generate new HSIs with
improved quantity, diversity, and reliability.

4. Proposed method

In general, it is expected that the synthetic new HSI should accu-
rately represent the spatial characteristics of objects while maintaining
the physical meanings of their spectral signatures. To this end, we
propose a solution outlined in Fig. 2, which involves three steps,
scene-based unmixing, abundance-based diffusion, and fusion-based
generation. Further details on this approach can be found below.

4.1. Scene-based unmixing

Our method starts with unmixing. A common solution for HSI
unmixing follows the spectral linear mixture model (LMM) theory [60],
formulating as:

𝑌 = 𝐸 ⋅ 𝐴 + 𝜖, (1)

where 𝑌 ∈ 𝐶×𝑊 ×𝐻 indicates the observed HSI, 𝐸 ∈ 𝐶×𝑘 represents
typical endmembers, 𝑘 symbolizes the number of 𝐸, 𝐴 ∈ 𝑘×𝑊 ×𝐻 is
their corresponding fractional abundance maps, and 𝜖 ∈ 𝐶×𝑊 ×𝐻 is
the bias item.

Uniquely, this study introduces a novel idea, i.e., scene-based un-
mixing, which assumes that different images of similar scenes can
be represented by a finite number of fixed endmembers and tailored
abundance maps. It should be noted that the term endmembers refers
to typical compositional constituents in a given scene, rather than pure
pixels composed of a single material in traditional unmixing.

Despite the effectiveness of traditional HSI unmixing networks, their
applicability is constrained by their unsupervised training on a single
4

HSI. It poses challenges for the scene decomposition of other modal im-
ages with varying numbers of spectral channels. Accordingly, we tailor
the process for scene-based unmixing, as shown in Fig. 2. To elaborate,
we first assume that the quantity 𝑘 of endmembers is known and fixed.
Then, we extract representative three-band data (corresponding to
RGB) 𝑌bs from the HSI through band selection. Subsequently, we design
an encoder 𝐸 to infer the abundance and a decoder 𝐷 to reconstruct
the original HSI. It is imperative to note that the reconstruction target
is 𝑌 and not 𝑌bs. It can be written as:

𝑌 = 𝐷(𝐸 (𝑌bs)), (2)

where 𝑌 ∈ 𝐶×𝑊 ×𝐻 indicates the reconstructed HSI, and 𝑌bs ∈
3×𝑊 ×𝐻 is the input of encoder. The fractional abundance maps 𝐴̂
should be governed by the abundance non-negative constraint (ANC)
and the abundance sum-to-one constraint (ASC). Hence, our 𝐸 is
composed of several residual spectral attention modules (RSA) [61] and
ends up with a softmax layer. The decoder contains a 1 × 1 convo-
lutional layer, simulating the linear mixing model (refer to Eq. (1)),
of which the weights represent the extracted endmembers 𝐸̂HSI. The
decoding process also can be formulated as :

𝑌 = 𝐷(𝐴̂) = 𝐸̂HSI ⋅ 𝐴̂ + 𝑏, (3)

where 𝑏 is the bias item. Such a design ensures that the output of the
encoder accurately represents the spatial distribution of abundances
while enabling the weights of the decoder to represent endmembers
with physical significance.

The loss function of the proposed unmixing framework comprises
three parts: the mean absolute error (MAE) loss MAE to ensure the
pixel-wise reconstruction accuracy, the spectral angle distance (SAD)
loss SAD to govern the fidelity of spectral signatures, and the endmem-
bers total variation (ETV) loss ETV to preserve the spectral smoothness
of the extracted endmembers. The total loss function  can be expressed
as:
 = MAE + 𝛼 ⋅ SAD + 𝛽 ⋅ ETV

= ‖𝑌 , 𝑌 ‖1 + 𝛼 ⋅ arccos(
(𝑌 , 𝑌 )

‖𝑌 ‖2‖𝑌 ‖2
) + 𝛽 ⋅

𝐶
∑

𝑖
(𝑒𝑖+1 − 𝑒𝑖),

(4)

where 𝑒𝑖 represents the value of 𝑖𝑡ℎ band in each spectral vector of
endmembers, and 𝛼 and 𝛽 are used to balance convergency for each
item. 𝛼 and 𝛽 are setting as 0.1 and 1𝑒−3, empirically. By optimizing
our network using this loss function, we can ensure stable and desirable
unmixing results to a significant degree.

Our scene-based unmixing method possesses broad applicability
across modalities, as similar scenes are also constructed from typical
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Fig. 3. Example results of scene-based unmixing from training to inference. (a) Remote
sensing city scene: trained on Chikusei dataset, and inferred on AID dataset; (b) Mixed
ground scene: trained on ARAD dataset, and inferred on Places 2 dataset.

Algorithm 1: Training for Abundance-based Diffusion

Input: Inferred abundances 𝐴̂RGB ∈ 𝑘×𝑊 ×𝐻

// 𝑘 aligns with the number of endmembers.
1 while not converged do
2 𝐀̂0 ∼ 𝑞(𝐀̂𝑅𝐺𝐵);
3 𝑡 ∼ Uniform({1,… , 𝑇 });
4 𝜖 ∼  (𝟎, 𝐈);
5 Take gradient descent step on

∇𝜃
‖

‖

‖

𝝐 − 𝝐𝜃(
√

𝛼̄𝑡𝐀̂0 +
√

1 − 𝛼̄𝑡𝝐, 𝑡)
‖

‖

‖

2
;

6 end

compositional components that exhibit different spatial patterns, rep-
resented through exclusive fractional abundance maps. Fig. 3 depicts
some example results of our method, which validate our claim. Next,
leveraging the well-trained unmixing network, we employ it to external
RGB datasets that conform to the same scene category, to infer their
abundance, denoted as 𝐴̂RGB.

4.2. Abundance-based diffusion

Our proposed abundance-based diffusion is built on the denoising
diffusion probabilistic model (DDPM) [40]. As illustrated in Fig. 4, it
mainly involves two processes, the forward process, and the reversal
process. The forward process involves the incremental addition of
Gaussian noise to the input abundance 𝐴̂𝑅𝐺𝐵 = {𝐴̂0

0,… , 𝐴̂0
5} until it re-

sembles random noise {𝐴̂𝑇
0 ,… , 𝐴̂𝑇

5 } ∼  (0, 𝐈). In contrast, the reversal
process is trained to progressively denoise the output. A well-trained
denoising network is then utilized to generate synthetic abundance
𝐴̂′
𝑅𝐺𝐵 from a random distribution of noise.

It is imperative to recognize the distinguishing feature of our pro-
posed abundance-based diffusion model when compared to other mod-
els, such as DDPM or LDM. The major distinction lies in the feature
space used during the diffusion process. As we have emphasized ear-
lier, the abundance space is a far superior choice when compared to
diffusing in the original HSI cube space or the latent feature space. The
abundance serves as an exceptionally effective low-dimensional repre-
sentation, significantly reducing the computational burden of diffusing
5

Algorithm 2: Sampling for Abundance-based Diffusion

Output: Synthetic abundances 𝐴̂′
RGB ∈ 𝑘×𝑊 ×𝐻

1 𝐀̂𝑇 ∼  (𝟎, 𝐈);
2 for 𝑡 = 1 𝑡𝑜 𝑇 do
3 𝐳 ∼  (𝟎, 𝐈);
4 𝐀̂𝑡−1 = 1

√

𝛼𝑡

(

𝐀̂𝑡 − 1−𝛼𝑡
√

1−𝛼̄𝑡
𝜖𝜃(𝐀̂𝑡, 𝑡)

)

+ 𝜎𝑡𝐳;

5 end
6 return 𝐴̂′

RGB = softmax(𝐴̂0) // softmax(⋅) for constraints
of ANC and ASC.

in the high-dimensional cube space. Furthermore, unlike the latent
feature, abundance holds a clear physical significance as it precisely
describes the spatial distribution of each endmember. Noteworthy,
unlike RGB images with three channels where the values within each
channel are largely independent of each other, the abundance matches
the number of channels with the count of endmembers and must strictly
adhere to the constraints of ASC and ANC. Therefore, when we shift
our focus to diffusion in the abundance space, it becomes essential
to consider and adhere to these two critical constraints. As such, we
introduce a softmax mapping before concluding the sampling process.

Both the training and sampling procedures of our abundance-based
diffusion for synthetic abundance generation are detailed in Algorithms
1 and 2.

4.3. Fusion-based synthetic HSI generation

The generation of synthetic HSI is a fusion process of multi-modal
information, i.e., synthetic abundance maps from external RGB images
𝐴̂′RGB and endmembers estimated from HSIs 𝐸̂HSI. The fusion rule still
adheres to the original LMM as in Eq. (1), which can be reformulated
as:

𝑌 ′ = 𝐸̂HSI ⋅ 𝐴̂′RGB + 𝜖, (5)

where 𝑌 ′ ∈ 𝐶×𝑊 ×𝐻 indicates the synthetic HSI, 𝐸̂HSI ∈ 𝐶×𝑘

represents the estimated endmembers, and 𝐴̂RGB ∈ 𝑘×𝑊 ×𝐻 symbolizes
the generated abundance maps.

The proposed approach of integrating synthetic abundance maps
and estimated endmembers for generating synthetic HSI is novel and
robust. It effectively leverages the strengths of both components, result-
ing in a more accurate and representative synthetic HSI. The use of the
reformulated LMM model ensures that the fusion process remains con-
sistent with proven theoretical models, further enhancing the reliability
and validity of the generated synthetic HSIs. Examples of synthesized
HSIs in different scenes are presented in the following experiments.

5. Experiments

We present a comprehensive evaluation of the proposed method
through a range of experimental procedures, including ablation, com-
parative, and expansion experiments.

5.1. Experimental settings

5.1.1. Datasets
This study employed multiple scenes to evaluate the robustness and

generalizability of the proposed method. In remote sensing scenes, we
trained the unmixing model using the Chikusei HSI dataset,2 validated
the unmixing model by the HSRS-SC dataset [11], and subsequently
employed the AID natural scene classification dataset,3 which exhibits
similar scenes, for abundance inference and diffusion. Similarly, in the

2 https://naotoyokoya.com/Download.html
3 https://captain-whu.github.io/AID/

https://naotoyokoya.com/Download.html
https://captain-whu.github.io/AID/
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Fig. 4. The Markov chain of forward (reverse) diffusion process of generating synthetic abundance by slowly adding (removing) noise abundance-based diffusion process.
Fig. 5. RGB rendering examples of adopted datasets for different cases.
Table 2
Detailed description of datasets adopted for HSI synthesis in the remote sensing scene.

Tasks Training
the scene-based unmixing

Validation
the scene-based unmixing

Training
the abundance-based diffusion

Datasets Chikusei (HSI) HSRS-SC (HSI) AID (RGB)
Imaging Sensor The Headwall Hyperspec-

VNIR-C imaging sensor
The Compact airborne spectro-
graphic imager, CASI

The Google Earth imagery

Spectral Range 363-1018nm→398-698 nm 380-1050nm→398-698 nm –
Spectral Resolution 128→59 48→59 3
Spatial Resolution 2.5 m 1 m 0.5-8 m
Patch Size 2517 × 2335 × 128→128 × 128 × 59 256 × 256 × 59 256 × 256 × 3
Samples 1 HSI→840 patches 700 1902
mixed ground scene, we utilized the ARAD hyperspectral dataset,4 Har-
vard dataset,5 in conjunction with the Place 26 natural image dataset.
The RGB rendering examples of these adopted datasets for difference
cases are presented in Fig. 5, and the detailed settings for the remote
sensing scenes are list in Table 2.

4 https://codalab.lisn.upsaclay.fr/competitions/721
5 http://vision.seas.harvard.edu/hyperspec/
6 http://places2.csail.mit.edu/
6

5.1.2. Metrics
The advance of synthesis HSI generation can be primarily evaluated

in terms of diversity and reliability. The former is largely dependent
on subjective assessments, while the latter relies on the quality of the
generated HSI and the distinction of the synthesis abundance. Since
the generated data lacks reference, no-reference quality evaluation
metrics, such as Fréchet Inception Distance (FID), precision, and recall,
are employed. Furthermore, in an ablation study to further verify the
reliability of the abundance inferred from RGB, quantitative evaluation
metrics, such as root mean square error (RMSE), peak signal-to-noise

https://codalab.lisn.upsaclay.fr/competitions/721
http://vision.seas.harvard.edu/hyperspec/
http://places2.csail.mit.edu/
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Fig. 6. Illustration of spectral profiles of the extracted endmembers under with/without ETV.
ratio (PSNR), structural similarity index (SSIM), spectral angle distance
(SAD), are also introduced.

5.1.3. Implementation details
All experiments are conducted using two NVIDIA 3090 GPUs. For

scene-based unmixing, we assume a scene composed of 5 endmembers.
The encoder is built using a stack of RSA modules, each containing
3 × 3 convolutional kernels and spectral channel attention with 1 × 1
convolution. The corresponding spectral channels of each layer are
varied in [3, 32, 64, 128, 96, 48, 5], where 3 refers to the channels of input
after band selection and 5 represents the number of endmembers, cor-
responding to the quantities of the estimated abundance maps. Then,
the decoder employs a linear layer composed of 1 × 1 convolutions to
reconstruct HSIs. For abundance-based diffusion, we set the variance to
increase linearly from 1𝑒−6 to 1𝑒−2 with a step size of 2000 during the
forward process. We construct a denoising U-Net with depth multipliers
of [1, 2, 2, 4, 4] for the reversal process. During training, we set the initial
learning rate to 1𝑒−4 and adopt the Adam optimizer. The scene-based
unmixing network is trained for a total of 40 epochs, while the diffusion
model is trained for 2M steps with a batch size of 8 to ensure model
convergence.

5.2. Ablation study

5.2.1. Endmember TV Loss function in the proposed scene-based unmixing
Traditional unmixing networks often employ endmember extraction

methods, such as VCA, to obtain the initial endmembers of the HSI,
initializing the weights of the unmixing decoder. However, it requires
additional processing, which not only makes network training non-end-
to-end but also causes error accumulation. Hence, we do not initial
the proposed scene-based unmixing in this manner. Additionally, to
avoid spectral spikes due to inadequate initialization, we introduce the
spectral total variation loss ETV to preserve the spectral smoothness
of the extracted endmembers. As depicted in Fig. 6(a), without ETV,
an unstable initialization results in significant spectral spikes and dis-
tortion in the extracted endmembers. Consequently, these endmembers
fail to accurately capture the fundamental spectral features of the scene.
By contrast, integrating ETV, (refer to Fig. 6(b)), effectively mitigates
the spectral spikes present in the extracted endmembers. Incorporating
a TV constraint enhances the smoothness of these sharing endmembers,
thereby promoting a more coherent and reliable representation of the
scene’s spectral characteristics.

5.2.2. HSI reconstruction based on traditional AE or the proposed scene-
based unmixing

The success of the proposed HSI synthesis solution relies on the per-
formance of the reconstructed HSI method. To assess the efficacy of our
approach, we conduct an ablation study comparing HSI reconstruction
based on traditional Autoencoder (AE) and scene-based unmixing, as
7

Fig. 7. Illustration of HSI reconstruction comparison based on traditional AE or our
scene-based unmixing. The validation data comes from (a) the HSRS dataset (HSI) and
(b) the AID dataset (RGB), respectively.

depicted in Fig. 7. The traditional AE here employs a symmetric U-net
structure, while the unmixing network, as previously mentioned, has
an asymmetric structure due to the introduction of the LMM, and its
decoder only included a linear layer. To ensure a fair comparison, the
encoders in both models are consistent, and the latent features in AE
and the abundance in the unmixing model have the same number of
channels. The comparative results in Fig. 7 demonstrate the significant
advantage of the unmixing model. From a feature perspective, it is
evident that abundance can better characterize the spatial distribution
of specific materials with more explicit physical meaning. Additionally,
based on the reconstruction performance, the HSI reconstructed by
our scene-based unmixing has superior fidelity in both the spatial and
spectral dimensions.

5.2.3. Reliability analysis for inferred abundances of RGB datasets
To demonstrate the reliability of inferred abundances of external

datasets by the scene-based unmixing network, we introduce two ad-
ditional hyperspectral imaging (HSI) datasets: the Harvard dataset7

with the size of 1300 × 1300 × 31 and the HSRS-SC hyperspectral
scene classification dataset [11] with the size of 256 × 256 × 48.
Subsequently, we selectively extract their RGB bands, infer their abun-
dances, and present a qualitative and quantitative assessment of the

7 http://vision.seas.harvard.edu/hyperspec/explore.html

http://vision.seas.harvard.edu/hyperspec/explore.html
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Fig. 8. Illustration of inferred abundance maps and reconstructed HSIs on HSRS-SC dataset.
Table 3
Quantitative evaluation for scene-based unmixing on cross different HSI datasets in
typical scenes.

Senarios RMSE PSNR SSIM SAD

Remote Sensing Citya 0.034 34.26 0.93 5.47
Remote Sensing Framlandb 0.035 32.01 0.93 6.59
Natural scenec 0.031 33.61 0.94 7.75

a Chikusei (Training) → HSRS-SC city (Validation).
b Chikusei (Training) → HSRS-SC agriculture (Validation).
c ARAD(Training) → Harvard (Validation).

reconstructed HSIs in Fig. 8 and Table 3. The quantitative results are
evaluated on average of 350 HSIs on the HSRS-SC dataset for each
remote sensing scene and 45 HSIs on the Harvard dataset for the natural
scene. Accordingly, although the training and validation are conducted
cross-datasets, the vision quality of the inferred abundances and the
reconstructed HSIs by our proposed method reveals robust and reliable
performance in different scenes. It empowers an objective evaluation
of the generalization performance of the proposed unmixing paradigm
across multi-modal images.

5.2.4. HSI generation by diffusion in different feature spaces
We undertook a comparative analysis of the performance of the

abundance-based diffusion model against the original methods that
were based on the original HSI and latent features, as shown in Fig. 9.
The original HSI-based diffusion model was trained using the Chikusei
dataset, which contained 128 bands. However, due to the high dimen-
sionality of this dataset, we faced significant challenges in generating
meaningful images. Indeed, even after making 5 million generator
iterations, the resulting image was still nothing more than meaningless
random noise, as shown in Fig. 9(a). This, unfortunately, made it impos-
sible for us to effectively evaluate the quality of the generated images
in Table 4. Upon completing the training, the generation time of the
abundance map is virtually unaffected by the number of endmembers.
The generation time for a 256 × 256 size image requires approximately
90 s.

In an attempt to alleviate the so-called curse of dimensionality, we
utilize the RGB dataset AID and a traditional U-net-like AE to derive
latent features. This latent feature-based diffusion does show some
improvement over the original method. However, according to results
shown in Table 4, despite taking about 2.8 million diffusion steps, the
quality of the synthesized latent features and the reconstructed HSIs
was still far from satisfactory. Furthermore, the latent features lack
physical meaning, and their instability poses a significant hindrance
to the effective reconstruction and generation of high-quality HSIs. As
shown in Fig. 9(b), the spectral curves of the generated HSIs exhibit
significant distortion.
8

Fig. 9. Illustration of HSI generation comparison on diffusion in different feature
spaces.

On a more encouraging note, the diffusion in the abundance space
significantly mitigated these problems. Our newly proposed abundance-
based diffusion model succeeded in generating high-quality HSIs that
not only had physical significance but also adopted a more realistic
style, as shown in Fig. 9(c). By exploiting the abundance, we are able
to navigate the high-dimensional space and generate high-quality HSIs,
overcoming the challenges that had previously hindered our progress.
It is important to note that the dimension of the abundance space is
equal to the number of endmembers. For this reason, we also include
a comparison of the diffusion generation of abundance under the
assumption of varying numbers of endmembers, as shown in Table 4.
A close examination of the results in this table reveals that setting the
number of endmembers to 5 provides the most effective balance. This
setting offers an optimal compromise between the quality of generation
and the consumption of computational resources.

5.3. Comparative experiments

5.3.1. HSI synthesis in remote sensing scene
Fig. 10 illustrates the false color images of HSIs synthesized by vari-

ous algorithms. The results of the Gaussian mixture model (GMM) [62]
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Table 4
Quantitative evaluation of ablation studies on the dimension of feature space used for diffusion generation.
Diffusion space (dimension) Generation quality Cost

FID↓ Recall ↑ Precision ↑ Params↓ Training (steps) Sampling

HSI Cube (128) – – – 99.88M 5 million 91s
Latent Feature (5) 49.47 0.165 0.181 103.57M 2.8 million 90s
Abundance (8) 15.19 0.361 0.310 99.78M 4.2 million 90s
Abundance (5) 8.23 0.509 0.484 99.76M 2.8 million 90s
Abundance (3) 8.77 0.503 0.415 99.75M 2 million 89s
Fig. 10. Comparative experimental results. (a) Input RGB; (b) GMM; (c) MST++; (d) Abundance-based E-VDVAE; (e) Abundance-based BigGAN; (f) The proposed MSF-Diff.
Table 5
Quantitative evaluation for synthetic HSIs generated by comparative generative AI-based methods for different scenes (evaluated on 5000 synthetic HSIs for each scene).
Scenes Remote sensing Natural

Metrics FID↓ Recall ↑ Precision ↑ Params Sampling FID↓ Recall ↑ Precision ↑ Params Sampling

Abundance-based E-VDVAE 39.13 0.209 0.184 178.78M 0.15s 51.43 0.146 0.133 178.77M 0.15s
Abundance-based BigGAN 11.35 0.456 0.392 58.41M 0.03s 10.04 0.275 0.647 58.40M 0.03s
The proposed MSF-Diff 9.33 0.517 0.479 99.76M 90s 13.56 0.346 0.755 99.75M 90s
are clearly distant from the real scene as it relies on ideal mathematical
distributions to synthesize endmembers, rather than accurately simu-
lating the true richness of the scene. On the other hand, the output of
the Multi-stage Spectral Transformer (MST++) closely aligns with the
input, although the spatial quality of the reconstructed data is slightly
lacking. Worse still, spectral super-resolution methods like MST++
have a notable limitation, requiring a large number of paired RGB-HSI
images for training.

In addition to traditional algorithms, we also conduct comparisons
with advanced deep generative models, involving Efficient VDVAE
(E-VDVAE) [51] and BigGAN [47]. Notably, to guarantee a fair compar-
ison, we tailor them to the abundance domain in our experiments. The
outputs produced by the Abundance-based E-VDVAE exhibit blurred
textures, limited information content, and an overall subpar quality.
The Abundance-based BigGAN, while showing slight improvements
over E-VDVAE, is hampered by the protracted training time due to the
unstable nature of the generative adversarial process. Apparently, tex-
ture distortions, unclear land cover boundaries resulting from localized
blurring and deformation, as well as unreasonable spatial distribu-
tions exist in the related synthetic HSIs. These deficiencies can largely
be attributed to the inherent instability associated with adversarial
training. In contrast, the HSI synthesized by the proposed MSF-Diff
effectively captures the spatial distribution characteristics of authentic
remote sensing scenes, yielding a diverse range of rich HSI samples.
The quantitative assessments presented in Table 5 further underscore
9

the superiority of our proposed method in terms of quality and diversity
in HSI generation, notwithstanding a minor trade-off in efficiency.

Furthermore, Fig. 11 shows the abundance generated by the pro-
posed abundance-based diffusion, the synthesized HSI, and the spectral
curves of selected sampling points, providing comprehensive evidence
of the reliability in generating HSIs. This indicates that the proposed
method holds significant advantages in terms of both quantity and
quality.

We also attempt to evaluate some no-reference metrics on synthetic
HSIs across different scenes. Typically, NIQE, PIQE, and BRISQUE
metrics are employed to assess spatial quality in natural images, and in
this study, we apply them to evaluate the spatial quality of each band
image in the synthetic HSI. The outcomes are visualized in Fig. 12,
depicting metric curves plotted along the spectral dimension. The
findings indicate that each band in the synthetic HSIs exhibits relatively
consistent and robust spatial quality.

5.3.2. HSI synthesis in natural scene
We also conducted comparison experiments in a natural mixed

ground scene, from which we obtained promising results that further
validate the effectiveness and generalization ability of our proposed
method. Notably, natural scenes have a very complex composition with
more unstable factors, making it impossible to list all the substances
they contain. Based on the synthetic examples in Fig. 13 and the cor-
responding evaluations of the no-reference quality metrics in Table 5,
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Fig. 11. Generation results in the remote sensing scene. (a) Synthetic abundance maps; (b) Generated HSIs in false color; (3) Spectral profile of several sampled pixels; (d) Spectral
profile of sampled regions in the size of 6 × 6.
Fig. 12. Illustration of typical non-reference quality evaluation on synthetic HSIs along
the spectral dimension.

traditional HSI synthesis methods continue to show poor performance.
Similar to the findings observed in remote sensing scenarios, compared
to the proposed MSF-Diff, VAE- and GAN-based methods exhibit short-
comings such as inadequate and indistinct textures, severe warping and
distortions, and unreliable spatial relationships.

The synthetic abundance and reconstructed spectral profile shown
in Fig. 14 provide evidence that our method can generate abundance
maps that match the actual spatial distribution and synthesize HSIs
with good and discriminative spectral signatures. This also indicates
that even for natural scenes with numerous uncertain factors, our
proposed method can effectively perceive the spatial distribution of
different substances. In particular, for the images in the third row of
Fig. 14, which are similar to backlit scenes, we sampled some backlit
areas and plotted spectral curves. The characteristics of these curves
are consistent with our target cognition, indicating that the spectral
reflectance of real backlit areas usually contains less information. The
spectral characteristics of the sampling area in Fig. 14(d) indicate that
10
Table 6
Parameters utilized for fine-tuning CNN-based networks.

Batch size Iterations Learning rate Weight decay Momentum

Former layers The last layer

32 1000 1e−4 1e−2 5e−4 0.9

Table 7
The overall scene classification accuracy (%) of different models with/without synthetic
HSIs.

Method Training set

40% HSRS-SC 40% HSRS-SC + Synthetic HSIs

AlexNet [63] 89.51 ± 0.21 93.65 ± 0.19
VGGNet-16 [64] 63.81 ± 0.45 65.69 ± 0.38
ResNet-18 [65] 39.05 ± 0.17 42.22 ± 0.26

the same substance shows good spectral consistency. This suggests
that the HSI generated by our proposed method has reliable spectral
characteristics and satisfactory signature attributes.

5.4. Extension experiments to downstream task

We conduct extension experiments on the scene classification task.
It is noted that existing scene classification datasets often have limited
scale and suffer from imbalances in class distribution. This trend also
can be observed even in the recently released HSI dataset, HSRS-
SC [11], which includes five categories: farmland, city building, build-
ing, idle region, and water. The number of samples for each category
in this dataset ranges from 154 to 485. When selecting 40% of the
dataset for training purposes, the largest class contains less than 200
samples. To address this issue, the dataset was augmented using the
proposed MSF-Diff technique, ensuring that each category contained
1000 samples. To demonstrate the impact on scene classification, we
employ three typical CNN-based networks and fine-tune them in our
experiments with or without our synthetic HSIs. The specific pa-



Information Fusion 108 (2024) 102419E. Pan et al.
Fig. 13. Comparative experimental results. (a) Input RGB; (b) GMM; (c) MST++; (d) Abundance-based E-VDVAE; (e) Abundance-based BigGAN; (f) The proposed MSF-Diff.
Fig. 14. Generation results in the natural mixed-ground scene. (a) Synthetic abundance maps;(b) Generated HSIs in false color; (3) Spectral profile of several sampled pixels; (d)
Spectral profile of sampled regions in the size of 6 × 6.
rameters utilized for this fine-tuning process are outlined in Table 6.
Notably, a higher learning rate of 0.01 was assigned to the final layer
to facilitate efficient convergence and prevent entrapment in local
optima, while a lower learning rate of 0.001 was assigned to the
remaining layers to ensure steady progress during fine-tuning without
disrupting the initializations. The results, presented in Table 7, show an
improvement in the classification model performance due to synthetic
data supplementation. This suggests that synthetic data can enhance
the diversity and scale of existing datasets, mitigate issues like sample
scarcity and class imbalance, and potentially benefit other downstream
tasks.
11
6. Conclusion

This work proposes MSF-Diff, which shifts the focus from high-
dimensional cubes to low-dimensional abundances and incorporates
easily accessible RGB images for HSI synthesis. The underlying as-
sumption is that images captured of a specific scene share similar
compositions that can be effectively represented by a small set of
endmembers and corresponding abundance maps. Building upon this
premise, we have developed a method comprising scene-based unmix-
ing, abundance-based diffusion, and fusion-based generation, collec-
tively referred to as MSF-Diff. Through this methodology, the gener-
ation of large volumes of diverse and high-quality synthetic HSIs that
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closely mirror real-world data becomes possible. Extensive experimen-
tation showcases the efficacy and superiority of the proposed approach.
Moreover, the validation on the downstream scene classification task
demonstrates its ability to enrich the existing HSI dataset by producing
a wide range of high-quality and diverse synthetic HSIs. This research
constitutes a notable contribution to the HSI synthesis domain, offering
a promising solution to tackling data scarcity challenges and driving
progress in artificial intelligence applications across various sectors.
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