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Abstract— Limited by the imaging paradigm, stripes are
pervasive in remote sensing scenes, and its intensity, density,
and periodicity differ dramatically among different imaging
systems. Worse, it always coexists with random noises caused by
unstable imaging condition. However, current destriping methods
are victim to undue ideal assumptions and fail to accurately
eliminate stripes against diverse practical degradation, yielding
excessive or inadequate destriping results. This study proposes
a progressive hyperspectral destriping method with an adaptive
frequency focus for accurate destriping and delicate restoration.
Specifically, a hierarchical decomposition and reconstruction
framework based on progressive wavelet learning encodes the
degraded input to the frequency domain with smaller scales,
easing the difficulty of restoration. Then, to avoid excessive
or insufficient destriping, we devote specific efforts to finely
separating noise and preserving details in the high-frequency
domain. First, we devise a gradient-aware frequency attention
block based on the prominent unidirectional pattern of stripes,
empowering to adaptively assign weights according to their
sensitivity to the spatial gradient. Second, we design a focal
high-frequency loss item that is dynamically scaled according
to the feature distance in the high-frequency domain, profiting
in identifying and preserving details. Extensive experiments
conducted on data with synthetic stripes and realistic satellite
scenes validate the superiority of the proposed method over
the current state-of-the-art methods. The code is available at
https://github.com/EtPan/PHID.

Index Terms— Frequency domain, hyperspectral image (HSI)
destriping, image restoration, wavelet transform.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) are always affected

by complex imaging chains, which alter the content
and visual quality of HSI. Stripes and random noise are
the most common degradation phenomena in spaceborne and
airborne remotely sensed images, especially more ubiquitous
in the hyperspectral satellite imaging system [1], [2], [3]. It is
primarily caused by unstable sensors, inconsistent responses
between different detectors, and charge-coupled device (CCD)
dark current interference [4], [S]. As scanners are typically
imaged in a whisk- or push-broom manner, noises easily
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manifest with stripes or defect lines sharing a fixed direction in
the scene [6], [7], [8]. Worse still, the ensuing signal distortion
and loss of details would lead to failure in many subsequent
interpretation tasks [9], [10], [11].

Over the past decades, many scholars have devoted their
endeavors to stripes removal in remotely sensed images [12],
[13], [14], [15], [16]. Previous methods solve such an ill-posed
problem as destriping HSIs is finding appropriate priors.
Some of them deeply rely on statistical data properties, such
as histogram or moment matching [17], [18]. Some others
have employed a variety of fundamental models, including
domain transformation [19], [20], sparse representation [21],
[22], [23], [24], and total variation [25], [26]. In contrast,
inspired by the rapid development of advanced deep learning
theory, various neural network-based strategies are proposed
for exploring solution to recover noisy HSIs in an end-to-end
manner [7], [27], [28]. These methods work by analyzing the
specific properties of HSIs, and most of them can handle the
ideal stripes. However, some critical issues remain.

1) The degradation of stripes in practical satellite scenes is
quite complex with irregular distribution and nonuni-
form intensity, even mixed with impulse noise or
deadlines, which makes traditional methods based on
the ideal stripe assumption, i.e., sparse, low rank, and
inferior in applicability [20], [29].

The low-rank theory-based assumption always regards
the stripe distributed periodically or regularly in few
bands, which easily leads to harder separation of the
stripes and image signals or wrong elimination of stripe-
like textures [30], [31].

Several intrinsic attributes of stripes, including promi-
nent geometric, unidirectional, and anisotropic proper-
ties, are neglected in methods designed for mixed noise
removal [32], [33]. In consequence, destriping results
are still unsatisfactory.

2)

3)

Regarding these limitations, we argue that developing an
advanced destriping method is of utmost significance, requir-
ing efficiently removing stripes, finely preserving the content
and details, and being adaptable to various sensors. In essence,
stripes arise from a combination of two factors: inconsis-
tent response between detector units and the motion of the
large-area imaging sensor, such as whisk- or push-broom
imaging [34], [35]. By this, stripes present a remarkable
property with its unique structures, involving smoothness
along the stripe direction, discontinuity across the stripe
direction, and its appearance may be regular rather than
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strictly random. Wavelet transform is considered a typical
tool for multiscale representation, lossless decomposition, and
reconstruction [36]. Also, it has been verified to be effective
in modeling the inherent directionality of stripes [37], [38],
[39]. We also have reviewed related research in Section II-B.
However, due to the complex distribution of various stripes,
destriping results by existing wavelet-based techniques still
suffer from excessive or insufficient destriping [20], [28].

To this end, we propose a novel method named progressive
HSI destriping with adaptive frequencial focus. First, in view
of the complex distribution of strip noise in real scenes,
we introduce a hierarchical representation of the wavelet
transform, intending to alleviate the dilemma of severe stripes
through progressive decomposition and reconstruction. After
the wavelet decomposition, both the content and stripes are
decomposed into low- and high-frequency components on
smaller scales, whereas the noise intensity is also decom-
posed, allowing easier removal. Then, given that components
in different frequencies usually comprise different features,
we implement progressive wavelet learning in two steps:
1) destriping on low-frequency components and 2) progres-
sive destriping and restoring on high-frequency components.
Notably, high-frequency components actually retain varying
noise and details. Considering the unidirectional property of
stripes, we design a gradient-aware frequencial attention to
adaptively assign weights for the noisy component. In addi-
tion, we add a skip connection, by which the low-frequency
components denoised in the first step can serve to guide the
second step and replenish more information. We also propose
a focal high-frequency loss to bootstrap the model toward
finely distinguishing noise and details in the high-frequency
components and further avoiding excessive destriping. Suffi-
cient experiments reveal that the proposed method can reach
the state-of-the-art HSI destriping performance. Our main
contributions are outlined as follows.

1) We construct a progressive wavelet learning framework
(PWL) based on a wavelet transform-like design for
multiscale modeling. It enables input with severe stripes
to be decomposed into easier and smaller components,
providing the trained model with solid generalization
capability.

We propose a gradient-aware frequency attention block
for high-frequency components. It can localize the heav-
iest distorted component and assign customized weights
according to their sensitivity to the spatial gradient.
We develop a novel dynamically scaled loss item named
focal high frequencial loss, where the scaling factor
depends on their feature distances. Such a loss enables
the model to focus on the component suffering heav-
ier noise corruption, facilitating further optimization of
results.

2)

3)

II. RELATED WORKS
A. HSI Destriping and Denoising

Early works solving such an ill-posed problem as HSI
destriping mainly focus on finding appropriate priors. Some
heavily relied on statistical data properties, such as his-
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togram matching [17], while others employed a variety of
fundamental models, including low rank [29], [40], sparse
representation [22], [41], and total variation [25], [42], among
others. These methods have alleviated this problem to some
extent. However, it cannot be ignored that most of them only
concentrate on isolated research on specific stripes corruption
of the given data, and the majority of them lack comprehensive
and systematic analysis of different remote sensing images and
various types of stripes noise.

Notably, abundant deep learning-based methods for HSI
destriping and denoising have been raised, which have dramat-
ically improved the restoration quality compared to traditional
optimization-based methods. For instance, Chang et al. [43]
considered the destriping task of remote sensing images
as an image decomposition problem and proposed a two-
stream CNN. Based on this, HSI-DeNet [44] incorporates
residual learning, dilation convolution, and multichannel fil-
tering to improve the denoising performance on top of CNN.
Zhong et al. [7] adopted a spaceborne—airborne data joint
learning strategy (SGIDN) to balance training samples and test
samples and used deep CNN to fully describe the degradation
of real HSIs in the spatial and spectral domains to restore the
original radiance information better. More recently, scholars
have combined model- and data-driven ideas, modeling the
inherent properties of HSIs into deep networks to further facil-
itate restoration performance. For example, Wei et al. [33]
proposed a 3-D quasi-recurrent neural network (QRNN3D)
to simultaneously explore the structural spatial-spectral cor-
relation and global correlation along the spectral. Zhuang
and Ng [32] established a fast-denoising model based on
low-rank regularization and sparse representation to reduce the
computational burden of large matrices and patchwise itera-
tion. Bodrito et al. [45] proposed a trainable spectral-spatial
sparse coding (T3SC) model by employing sparse coding and
deep learning. In addition, our prior work [46] developed a
spatial-spectral quasi attention network (SQAD) to model the
local spectral correlation in recovered HSIs.

Although methods based on deep learning have obvious
advantages over traditional methods, such algorithms neglect
the unique properties of stripes and have limited generaliza-
tion capabilities. We conclude that the existing methods are
not accurate enough to deal with complex stripes, and their
versatility is not ideal.

B. Learning in Frequency Domain

Wavelet transform-based signal decomposition techniques
have been well established due to their accurate reconstruction
and multiresolution analysis capabilities. Recently, different
works have been proposed to incorporate it with CNNs
on various tasks involving classification, image hiding, style
transfer, super-resolution, and image denoising. For example,
Bae et al. [47] found wavelet transform benefits data mani-
fold simplification and proposed a wavelet residual network
(WavResNet) for image denoising and single image super-
resolution. Guo et al. [48] introduced a deep wavelet super-
resolution (DWSR) method that combines complementary
information of low- and high-frequency subbands to restore
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Fig. 1. PWL for HSI destriping. YH® and YL@ denote the ith level high- and low-frequency features decomposed from noisy Y, respectively, while XH®)

and XL are for reconstructing the clean X.

image details. Unlike the above methods only considering
single-level wavelet decomposition, Liu et al. [49] proposed a
multilevel wavelet convolutional neural network (MWCNN)
that embeds multilevel discrete wavelet transform (DWT)
and inverse DWT (IDWT) into CNN to model both context
features and inner dependency between subbands. A densely
self-guided wavelet network (DSWN) [50] employs the mul-
tilevel wavelet transform in a U-Net structure to recover clean
real-world images.

Besides, wavelet transforms have also seen widespread
use for hyperspectral destriping since the orientation of
stripes from whisk- or push-broom sensors in the along-track
direction [19], [39], [51]. In short, the wavelet transform
concentrates the signal energy from the stripes exclusively into
the relatively few wavelet subbands with vertical orientation
so that destriping efforts can be easily focused there. Pande-
Chhetri and Abd-Elrahman [19] applied a Fourier-domain filter
to the wavelet coefficients in vertical subbands. However,
previous studies have shown that Fourier-based destriping
methods are not effective for nonperiodic stripes. Later, Qian
and Ye [51] extended 2-D DWT and 2-D discrete cosine
transform (DCT) to 3-D space and produced a dictionary from
3-D hyperspectral cubes. Liu et al. [39] proposed an iterative
image decomposition method composed of a low-rank model
for the stripes coupled with a group-sparse prior on the wavelet
coefficients of the subbands in question. Wang et al. [28]
improved destriping performance by applying cross-channel
enhanced spatial and spectral attention to focus on key infor-
mation. Our prior work [12] designed a denosing network in
the frequency domain by embedding DWT/IDWT as lossless
encoder and decoder.

In a nutshell, existing wavelet-based methods for HSI
denoising focus on the advantages of multiresolution analysis
provided by wavelet transform. However, they often fail to
restore stripe-like textures or overlook the contribution of
individual channels to stripe removal, leading to unsatisfactory
results. In contrast, our proposed method considers the unique
characteristics of stripes with gradient-aware frequencial atten-

tion and provides a progressive solution with adaptive fre-
quency focus. This approach preserves high-frequency details
and recovers high-fidelity clean HSIs.

III. METHODOLOGY

This work devotes to investigating a method that can effec-
tively remove HSI stripes and noise while preserving spatial
details and suppressing spectral distortion. Hence, we try to
model the stripes in terms of its properties and distribution
by designing sensible network architecture and a refined loss
function to boost the destriping performance.

The overall architecture of our proposed method is shown
in Fig. 1. First, multilevel DWT decomposes the noisy input
Y into different components. Then, we conduct destriping [the
process L(-)] on the low-frequency components, in which
stripes can be easier to recognize and remove by the net-
work. Next, the process H(-) is performed for destriping and
restoring the cleaner high-frequency components. Later, the
restored low- and high-frequency components are incorporated
by IDWT, and a spatial-spectral consistency regularization
block (SCRB) is employed hereafter to enhance the structural
fidelity. Noteworthy, the decomposition and reconstruction
processes are conducted processively and recurrently. With
the progressive decomposition of the noisy input, its resolu-
tion becomes smaller and smaller. It leads to the destriping
process actually performing on a small-scale resolution. Also,
degradation caused by stripes and noise is weakened with the
decomposition process, making the removal more easily. Thus,
the progressive wavelet learning architecture can achieve HSI
destriping in arbitrary intensity.

A. Progressive Wavelet Learning

Our proposed method is grounded on the wavelet transform,
which can decompose the noisy HSI into several same-scale
subcomponents with corresponding wavelet coefficients. The
Haar wavelet calculated by DWT is exploited to characterize
different-frequency features in this work. As observed from
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Fig. 2.

Ilustration of progressive DWT and IDWT process with level 2.

Fig. 2, the principal structural features of the signal are pre-
served in L, while H;—H3; comprise high-frequency noises and
details. In this work, to attain the frequency subcomponents
at different scales, we perform the wavelet decomposition in
a stepwise manner.

Denote the wavelet decomposition process as D(-), and
then, the decomposition of the noisy ¥ e RW*#*B and
subsequent low-frequency components can be formulated as
follows:

(YL, yH", YHY, YH( } = D(Y)

{YL®, YHP, YHY, YHY } = DYLY)

{YLO YHP, YH, YHP} = DLy ()

where i denotes the level of decomposition and YLD, YH® ¢
RW/20)x(H/20)xB

After the decomposition, the noisy HSI turns into multiple
noisy wavelet subcomponents. Then, two mappings L(-) and
H(-) are required to recover these components and obtain
stripeless ones. First, for the top low-frequency noisy com-
ponent, a process L(-) is utilized to recover YL®) into the
clean one XL®, denoted as

2

Hereafter, the principal structure of stripeless compo-
nents XL® is obtained. Then, we conduct H(-) on the
high-frequency components with the guidance of XL for
further destriping and restoring, signified as

XL® =L(YL?).

xH{, XHY, XH{'| = H(YLO, YH, YH{, YH).
3)

Then, the recovered wavelet components at the small scale
can be combined into the low-frequency component at a
larger scale (twice at each level) by IDWT, denoted as R(-).
In addition, an SCRB is utilized to enhance the HSI structural
fidelity as below,

XL¢~D = SCRB (R (XL<">, XH?, XHY, XHgi))). (4)

With the reconstruction process denoted as (3) and (4),
the stripeless components can also be recovered progressively.
Noteworthy, the decomposition and reconstruction processes
are conducted processively and recurrently. With the progres-
sive decomposition of the noisy input, its resolution becomes
smaller and smaller. It leads to the destriping process actually
performing on a small-scale resolution. Also, degradation is
relatively weakened with the decomposition process, making
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Fig. 3. (a) Illustrations of gradient saliency in different directions for
high-frequency components. (b) Their spatial gradient curves.

the removal more easily. Thus, the progressive wavelet learn-
ing architecture can cope with the complex distribution of
stripe and noise and facilitate practical HSI destriping.

B. Gradient-Aware Frequencial Attention

As we all know, the direction property of stripes highly
depends on the mode of satellite imagery. Existing satellite
imagery is essentially a horizontal whisk broom or a ver-
tical push broom to scan a large area, resulting in stripes
along the vertical or horizontal direction. Apparently, after
decomposition, as shown in Fig. 2, the three high-frequency
components preserve diverse details by filtering in different
directions, and one of them always suffers the most. In other
words, due to the unidirectional property, stripes tend to be
more prominent in a certain direction. Therefore, averaging all
high-frequency components would easily lead to excessive or
insufficient destriping. On this account, we have to treat these
components customized to achieve fine noise separation and
high-fidelity details restoration in the high-frequency domain.

A natural idea is that assigned different weights to compo-
nents in different directions. As shown in Fig. 3(a), when the
input image has vertical strip noise, we can rapidly and accu-
rately locate the most severely degraded component, i.e., Hy,
according to the saliency of the horizontal gradient. Evidently,
integrating the gradient calculation in different directions
can assist us in locating the components that require higher
weights. Therefore, we devised the formula for calculating the
spatial gradient as follows:

M—-1N-1

1
G = 11 SN VG m.n)? + Gum.n)> +e (5)

m=0 n=0

where M and N indicate the spatial size of the high-frequency
components, respectively, G, and G, denote the vertical
gradient and the horizontal gradient, respectively, and € is an
infinitesimal constant and empirically set to 107°. Fig. 3(b)
shows the spatial gradient curves of these three components
along the spectra dimension and evidence that it is reasonable
to assign various weights according to spatial gradients.

Furthermore, integrating spatial gradient calculated as (5),
we design a gradient-aware frequencial attention block, termed
GFA. As shown in Fig. 4, GFA plays the role of a weight
regulator, who assigns diverse weights according to the spatial
gradient and average feature of each high-frequency compo-
nent and generates weights value between 0 and 1 by the final
sigmoid function.
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attention.

Despite the adaptive weights generated from GFA, we also
associate XL into the process H(-), assuring the intact
high-frequency textures and details with the guidance of the
corresponding destriping low-frequency component. As shown
in Fig. 4, the main body of H(-) is a residual dense block [52],
which not only preserves the feedforward nature but also fully
utilizes all the layers within it via dense local connections.

C. Focal High-Frequency Loss Function

The loss function of our model involves three terms: fidelity
loss, frequency domain loss, and spectral angular loss. In con-
crete, the fidelity loss measures the difference before and
after HSI destriping from a global perspective, the frequency
domain loss forces the low- and high-frequency components
to retain the sufficient structure and detailed information
upon destriping, and the spectral angular loss constrains the
recovered spectra fidelity. The overall loss function Ly, can
be expressed as follows:

Lioal = La + )Ll . ['freq + l2 : Lspec (6)

where L, Lieq, and Lgpe. denote the fidelity loss, the fre-
quency domain loss, and the spectral angel loss, respectively,
and A; and A, denote the coefficients of the corresponding
items. To ensure balanced convergence, they are set to 0.5 and
0.25 based on experiments.

In concrete, L1loss(-) (i.e., mean abs error) is employed for
fidelity loss, which is formulated as

Lsqa = L1loss(x, x) @)

where x and x’ represent the denoising result and the
noisy-free ground truth, respectively. Besides, following the
decomposition idea in this work, to incorporate the unique
properties of high- and low-frequency domain features,
we adopt L2loss(-) (i.e., mean square error) for the structural
and content features and design a focal high frequencial loss
for the finely high-frequency details, which can be calculated
as follows:

Lieg = L2loss(xl, xI') + > i =1 -FHL; (xh, xh')
(3

where xI and xI’ represent the low-frequency features of the
denoising result and the noisy-free ground truth, respectively,

26-D)

(©)

Fig. 5. Comparison of destriping results with and without focal
high-frequency loss function. (a) Noisy image and its noise. (b) Result and
its noise residual map produced by the network without focal high-frequency
loss function. (c) Result and its noise residual map produced by the network
with focal high-frequency loss function.

xh and xh’ are the corresponding high-frequency features, and
i symbolizes the level of decomposition (1 is configured as 3 in
this work).

In particular, FHL,;(-) signifies the focal high frequencial
loss. Its design likewise follows the previous idea, i.e., the
high-frequency components in different directions are cor-
rupted by noise to varying degrees, making their recovery
difficult. Therefore, we design a feature distance-based loss
function for the high-frequency components, allowing us to
focus on recovering the heavier noise-corrupted one, which is
calculated as follows:

cC M N

1
FHL, (xh, h’=7§ E E xh; — xhi|1
(eh, xh') cxnxm o-lx xhil
()

where o« = ]xh — xh'|(e € R"3) and C, M, and N are the
sizes of high-frequency components.

As represented in Fig. 5, with the focal high-frequency loss
function, the proposed network could restore stripe-free results
with higher spatial fidelity and are capable of preserving local
details. In particular, comparing the noise residual maps in the
bottom of Fig. 5, it proves that our method discriminates well
between noisy and effective features in high-frequency details,
avoiding the loss of critical information.

IV. EXPERIMENTS
A. Experimental Settings

1) Data: We conduct destriping experiments on data with
synthetic degradation and real satellite HSIs. For training,
datasets are from publicly available HSI dataset ICVL!' [53],
where 120 out of 201 practically noise-free HSIs are sampled
as the training set in our experiment, and along with 5 for
validation, the rest constitute the testing set. Each HSI cube in
ICVL has a spatial resolution of 1392 x 1300 and a spectral
dimension of 31. To further demonstrate the generalization

Thttp://icvl.cs.bgu.ac.il/hyperspectral/
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ability of our model, we also test real HSIs collected from
satellites, involving the GF-5 Baoqing dataset and the GF-5
Wuhan dataset’> with 155 bands acquired by the Advanced
Hyperspectral Imager in GF-5 satellite [54].

2) Synthetic Noise Settings: We mimic a series of synthetic
stripe noisy cases involving: 1) vertical stripes; 2) horizontal
stripes; 3) a mixture of vertical stripes and non-independent
and identically distributed (i.i.d) Gaussian noise; and 4) a
mixture of horizontal stripes and non-i.i.d Gaussian noise.
We configure some associated settings to maximize the imita-
tion of practical noise contamination. Specifically, two-thirds
of bands, 5%—45% of columns or rows in the first two cases,
and one-third of bands, 5%-35% of columns or rows for
the last two cases, are randomly selected to add stripes or
noises. Also, the non-i.i.d. Gaussian noise in the last two cases
is added to one-third of the bands with a random intensity
ranging in the interval [10, 70].

3) Implementation Details: Noteworthy, considering that
HSIa collected by different sensors that usually have varying
spectral resolution, we expand a new dimension for both input
and output, extending the 4-D tensor (batch_size, C, H, W) to
a 5-D tensor (batch_size, 1, C, H, W), where C indexes the
spectral dimension and H and W represent the spatial domain.
It enables the transformation and calculation of feature maps
to occur primarily on the other three dimensions, except “C,
making the model’s parameters independent of the spectral
dimension. The training patches have a spatial size of 64 x
64 and the complete spectral dimension 31. To improve the
robustness of training, we scale the patches with a rate in
{1,0.5,0.25} and randomly rotate them to further diversify
the training set. Besides, 80 epochs are set up throughout the
training process. To be concrete, during the first 40 epochs,
we added mimic stripe noise in different directions to the train-
ing data and validated the model on cases 1 and 2. We added
mixed noise for the latter 40 epochs and validated the model
on cases 3 and 4. The batch size (i.e., 16) is employed to
stabilize the training. Parameters are initialized with Kaiming
initialization and updated by the Adam optimizer. The learning
rate is set to 0.001 and decreases exponentially with epochs
until the validation performance does not increase anymore.
Noteworthy, all deep learning-based methods run on the same
GPU RTX 3090Ti, while other methods run on the same CPU
i9-10940H.

4) Evaluation Metrics: We employ four quantitative quality
indices to evaluate the denoising performance, inclusive of
mean peak signal-to-noise ratio (MPSNR), mean structure
similarity (MSSIM), and mean feature similarity (MFSIM) for
spatial-based image quality evaluation, as well as mean relative
dimensionless global error synthesis (MERGAS), and mean
spectral angle mapper (MSAM) for quantitative evaluation on
the spectral dimension. In addition, we report the average
running time, which is measured by processing a noisy HSI
input with the size of 512 x 512 x 31.

Zhttp://hipag.whu.edu.cn/dataset/
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B. Results on Data With Synthetic Noises

To verify the effectiveness of our method in stripes and
noises removal, we compare it with several existing com-
parative HSI destriping methods and state-of-the-art methods
for mixed HSI noises removal: ASSTV [25], LRTD [29],
LRTDTV [26], LRTDGS [41], QRNN3D [33], SGIDN [7],
FastHyMix [32], T3SC [45], SQAD [46], MAC-Net [13],
GRUNet [14], En-OctNet [28], and D2Net [12]. For most
algorithms, we adopt the publicly available source code and
the given parameters or trained model from the authors,
except for SGIDN and T3SC, which we reproduced in the
PyTorch-based framework and retrained with the synthetic
data in this work.

1) Spatial Quality Comparisons: The visual results of some
representative scenes are shown in Fig. 6. From the results
of the first two cases, destriping methods ASSTV and LRTD
effectively remove most of the stripes but with minimal image
quality improvement due to the remain of random noises.
Regarding the results of the mixed noise removal algorithms,
the residual noise maps of LRTDTYV, T3SC, QRNN3D, SQAD,
and MAC-Net reveal that some essential information and
texture details are excessively denoised. A large amount of
strip noise still remains in the results recovered by LRTDGS,
SGIDN, and T3SC, which implies that they cannot cope with
such cases of individual stripes corruption. Compared with the
advanced SGIDN, our proposed method is more delicate in
retaining details, and the recovered image obtains the optimal
quantization value. Similar conclusions can also be obtained
by observing the results of the last cases. Algorithms designed
only for stripes fail to remove mixed noise and show poor
performance. QRNN3D, SQAD, MAC-Net, and GRUNet still
suffer from excessive denoising and present oversmoothed and
blurred results. FastHyMix and T3SC exhibit stripes leftovers
due to the inadequate consideration of stripes. Compared with
other methods, the methods based on wavelet transform, i.e.,
En-OctNet, D2Net, and the proposed method, can significantly
reduce the loss of texture features, as can be seen from the
noise residual map in Fig. 6. Our proposed method obtains the
best denoising results with a superior model, achieves high-
fidelity recovery, and shows better results with fewer artifacts
and sharper edges.

2) Spectral Fidelity Comparisons: To verify the superiority
of our method in spectral fidelity, we select one typical pixel
in all four cases and draw its spectral curves recovered by
comparing methods in Fig. 7. Apparently, methods, such as
FastHyMix, T3SC, and MAC-Net, show unstable performance
for restoring different bands, and the spectral distortion of
the recovered pixel even gets worsen. Compared to the other
results, the spectra curve recovered by our proposed method is
much closer to the reference under all simulated degradation
cases. It indicates that our method accurately eliminates the
negative effect of noise in the spectral domain and further
confirms the advantage of our model in maintaining high
spectral fidelity.

3) Quantitative Comparisons: Table 1 shows the mean
quantitative statistical results of the testing set for different
striping noise pollution cases. The results indicate that our
proposed method performs robustly even when severely cor-
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TABLE I

QUANTITATIVE PERFORMANCE OF ALL COMPETING METHODS UNDER CASES WITH DIFFERENT SYNTHETIC STRIPES NOISES ON THE ICVL DATASET.
RED: BEST RESULTS. PURPLE: SECOND

ASSTV LRTD LRTDTV LRTDGS FastHyMix

QRNN3D

SGIDN T3SC SQAD MAC-Net GRU-Net En-OctNet D2Net

Metricx ~ Noisy 125] 129] 126] [41] 1321 [33] 7] [45] [46] [13] [14] [28] [12] Ours
Case 1: Synthetic vertical stripes
MPSNR 1 25.698 29.313 38.188 37.698 31.954 38.656 40918 42.064 34.867 39.663 36.089 37.145 36.021 40.417 42.664
MSSIM 1 0.5452 0.7833 0.8962 0.9331 0.7592 0.7570 0.9695 0.9698 0.8714 0.9412 0.9274 0.9411 0.9530 0.9716 0.9810
MFSIM 1 0.8046 0.9662 0.9880 0.9694 0.8870 0.8997 0.9907 0.9967 0.9548 0.9865 0.9863 0.9832 0.9884 0.9889 0.9933
MERGAS | 35.1730 28.2145 9.4970 7.0989 20.6069 20.6927 3.6517 3.6388 6.1827 7.3055 10.6023 5.7172 7.1121 3.5404 2.3742
MSAM | 05715 0.2942 0.1760 0.1193 0.3848 0.3740 0.1010 0.1412 0.1921 0.1452 0.1621 0.1316 0.1244 0.0851 0.0636
Case 2: Synthetic horizontal stripes
MPSNRT  25.683 29.501 37.950 37.817 36.290 38.369 38.936 41.576 31.026 39.492 36.041 37.588 38.032 40.648 42.733
MSSIM 1 0.5442 0.7918 0.8968 0.9350 0.9246 0.7566 0.9564 0.9671 0.8220 0.9413 0.9291 0.9356 0.9581 0.9732 0.9830
MFSIM 1 0.8034 0.9706 0.9882 0.9707 0.9620 0.8992 0.9857 0.9958 0.9454 0.9767 0.9867 0.9828 0.9919 0.9898 0.9945
MERGAS | 343328 28.1467 10.1943 5.8923 6.1719 19.6647 4.5015 3.7137 12.1287 6.6349 10.2374 5.2820 5.7485 3.2167 2.3032
MSAM|  0.5720 0.2967 0.1755 0.1171 0.1443 0.3719 0.1177 0.1407 0.2188 0.1318 0.1674 0.1247 0.1199 0.0854 0.0664
Case 3: Synthetic vertical stripes + non-i.i.d. Gaussian noise
MPSNR 1 20.613 24.614 26.008 37.455 34.635 35273 40.795 40.375 41.344 40.3260 39.677 41.322 38.957 41.685 41.748
MSSIM 1t 0.2938 0.4332 0.4418 0.9347 0.8859 0.8052 0.9719 0.9635 0.9676 0.9660 0.9583 0.9671 0.9516 0.9710 0.9718
MFSIM 1t 0.6906 0.8276 0.7911 0.9718 0.9396 0.9399 0.9837 0.9964 0.9903 0.9865 0.9841 0.9820 0.9782 0.9935 0.9894
MERGAS|  50.6600 36.6471 37.8023 4.9425 6.1755 8.0674 2.9635 4.0369 2.8433 2.8924 3.2326 2.9446 3.5769 2.5487 2.5106
MSAM|  0.8294 0.6084 0.6383 0.0940 0.1367 0.2206 0.0897 0.1515 0.0852 0.0682 0.0888 0.0755 0.0936 0.0673 0.0662
Case 4: Synthetic horizontal stripes + non-i.i.d. Gaussian noise
MPSNR  27.231 28.420 32.019 38.644 37.064 41.195 44.056 42.457 37.954 40.9730 44.559 43.886 40.813 42717 45.041
MSSIM  0.5335 0.6467 0.6692 0.9471 0.9270 0.8722 0.9835 0.9691 0.9147 0.9720 0.9815 0.9820 0.9719 0.9818 0.9865
MFSIM  0.8084 0.9063 0.8876 0.9756 0.9565 0.9576 0.9944 0.9972 0.9598 0.9890 0.9928 0.9942 0.9887 0.9958 0.9964
MERGAS|  38.2690 30.3285 28.5305 4.1489 4.4541 7.2124 1.9044 3.5220 3.9728 2.6910 1.7988 1.9944 2.8414 2.4047 1.7234
MSAM | 0.7074 0.5180 0.5361 0.0759 0.0809 0.1890 0.0514 0.1407 0.1034 0.0649 0.0552 0.0527 0.0722 0.0578 0.0493
TIMES | - 28.13 273.65 357.31 75.23 2.68 0.80 1.85 111 0.68 3.21 0.85 0.99 0.91 0.60
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Fig. 7. Spectral fidelity of comparative methods under four synthetic noisy
cases on the ICVL dataset are presented, respectively. (a) Case 1: synthetic
vertical stripes. (b) Case 2: synthetic horizontal stripes. (c) Case 3: synthetic
vertical stripes + non-i.i.d. Gaussian noise. (d) Case 4: synthetic horizontal
stripes + non-i.i.d. Gaussian noise.

rupted by mixed noise. This demonstrates the effectiveness
of our PWL, which progressively decomposes severe noise
and releases the difficulty in restoration. In contrast, traditional
methods, such as ASSTV and LRTD designed for destriping
noise, as well as LRTDTV and LRTDGS for removing mixed
noise, require time-consuming customized parameter settings
and only offer moderate restoration performance. FastHyMix,
T3SC, MAC-Net, and GRUNet exhibit less stable image
restoration capabilities and only have relatively competitive
denoising effects in some cases. Although SGIDN performs
better in the MFSIM index and achieves stable and optimal
values, it is still inferior to our proposed method in other
indices such as MPSNR, MSSIM, MERGAS, and MSAM.
Overall, our method significantly improves the spatial visual

quality and spectral fidelity indicators in all synthetic noise
cases, especially in the MPSNR index, which increases by
an average of approximately 17 dB. However, our method
sacrifices a little in the MFSIM index, which is on average
0.004 lower than SGIDN. This indicates the superior flexibility
of our proposed method. To provide a more detailed quanti-
tative comparison, we also present Fig. 8, which includes the
PSNR and SSIM metrics evaluated along the entire spectral
dimension for a typical HSI in each case. Although our
proposed algorithm did not achieve the best performance in
terms of PSNR in some bands, it still achieved a stable
improvement in PSNR values compared to other advanced
algorithms in all bands. This also demonstrates the robustness
of our proposed method for image restoration in the spectral
dimension.

C. Results on Real Satellite HSIs

We have selected ASSTV [25], LRTD [29], LRTDTYV [26],
FastHyMix [32], SGIDN [7], SQAD [46], MAC-Net [13], and
D2Net [12] as to validate and compare the performance of
HSI restoration on real satellite datasets. For the proposed
method in this article, as the degradation in cases 3 and 4 with
complex noise has mimic actual degradation to the greatest
extent possible, we directly use the models trained under
these cases to evaluate the real satellite HSIs. We have used
publicly available parameter settings and models pretrained in
the aforementioned synthetic experiments for most algorithms.

Figs. 9 and 10 present some representative visualization
results from the GF5 Baoqging dataset and the GF5 Wuhan
dataset, respectively. Apparently, complex degradation with
stripes and other noises exists in these data among different
bands to varying degrees. Despite this, our method exhibits sta-
ble performance with the slightest noise residual (remarkable
improvements in comparison with traditional destriping meth-
ods ASSTYV, LRTD, LRTDTY, and FastHyMix) and the highest
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Fig. 9. Destriping results on the GF5 Baoging dataset from some comparative methods. (a) Images of noisy bands. (b) ROI of images restored by different
methods. (c) Spectral of two typical pixels recovered by different methods.

TABLE I

ABLATION STUDIES (INVOLVING THE INVESTIGATION OF SUBCOMPONENTS AND LOSS ITEMS) ON THE ICVL DATASET. WE EVALUATE THE RESULTS BY
PSNR (dB), SSIM, SAM, AND THE NUMBER OF PARAMETERS (PARAMS) OF THESE NETWORKS. OUR BENCHMARK NETWORK IS INDICATED BY
BOLDFACE. (NOTES: D/R DENOTES DWT/IDWT AND LFG SIGNIFIES THE GUIDANCE OF DENOISED LOW-FREQUENCY COMPONENTS)

Subcomponents Loss Metrics
No. PWL H(- Lie

R scre “) “RoB Lk% GFA~ ©Y o FHL  wih AL Cem MPSNR . MSSIM. MSAM - Params

1 v VY v 3547 0943 0.134  1.IOM

2 v VR v v 3775 0965 0112  1.1IM

3 v Vv o vV 3864 0973 0114  1.1IM

4 v v Vv < v v 3851 0971 0107  1.12M

5 v v v v v v v 3886 0975 0109  1.12M

6 v v v v o vV v 3012 0979 0105 1.12M
OURS v v < v S v v v /3928 0982 009 1.12M

detail recovery fidelity [especially obvious in comparing with
SGIDN, SQAD, MAC-Net, and D2Net in Fig. 10(b)]. It also
confirms the ability of our model to generalize in real satellite

scenes. On the other hand, Figs. 9 and 10 also present the
spectral curves of two typical pixels recovered by some leading
methods. The original spectral curves befall some localized
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Fig. 10. Destriping results on the GF5 Wuhan dataset from some comparative methods. (a) Images of noisy bands. (b) ROI of images restored by different

methods. (c) Spectral of two typical pixels recovered by different methods.

TABLE III
RESULTS OF ABLATION STUDIES ON GFA

No. GFA Metrics
Spatial Gradient — AdaptiveAvg Pooling MPSNR  MSSIM
1 - - 38.14 0.973
2 v - 38.55 0.976
3 - v 38.52 0.980
4 v v 39.28 0.982

dense fluctuations and a few spikes because of noises or
stripes corruption. It is pretty clear that the proposed destriping
method alleviates this problem to a certain extent, and the
overall shape of the recovered spectral curves shows more
consistency and retains more meaningful intrinsic features.
It verifies the effectiveness and flexibility of our model.

D. Ablation Studies

To downright verify the effectiveness of each endeavor for
HSI destriping in this work, we conduct comprehensive abla-
tion studies on the ICVL dataset, involving the investigation
of subcomponents and loss items. In contrast to the settings
of previous comparative experiments, the ablation experiments
adjust settings in two main aspects. Specifically, we reduce the
training data size to only 2/3 of the original and evaluate the
model of each ablation only on the simulation of case 1. Such
a setting is efficient and also can comprehensively reflect the
positive effects of all modules on model training. Table II lists
the relevant indicators with various ablation experiments, and
a detailed analysis is carried out as follows.

The top four rows investigate the validity of each subcompo-
nent of the backbone in the proposed method, which consists
of PWL, the process L(-), and the process H(-). Obviously,
the designed GFA imposes no additional computational burden
and brings considerable gains in other metrics (like 2.28 dB
in MPSNR, 0.22 increase in MSSIM, and 0.022 decreases in

MSAM), while adding denoised low-frequency components’
guidance (LFG) and SCRB increments the number of parame-
ters by almost 0.1 M. It reveals the advantages of GFA. SCRB
significantly optimizes the performance on MSAM metrics by
sacrificing a little bit of spatial quality. On the other hand,
the optimal model of our method is trained under the joint
constraint of multiple loss items. The ablation experiments
in the last four rows exemplify the irreplaceable role of
each loss item, especially focal high-frequency loss function
(FHL) in Lyrq (brings over 0.6-dB increments in MPSNR).
In a nutshell, the incremental designs in this work can be
summarized into two categories: 1) both GFA in the process
H(-) and FHL in the loss function term Lg.q serve to assign
adaptively frequencial focus in high-frequency domain, which
significantly improves the quality of the recovered HSI, and
2) SCRB in PWL and LFG in the process H(:) and Lgpec
guarantee their high spatial-spectral fidelity.

V. CONCLUSION

In this article, we propose a progressive HSI destriping
method with an adaptive frequency focus. It has a PWL, which
eases the difficulty of restoration by decomposing the degraded
input over multiple levels. Incorporating the unidirectional
property of stripes, we develop a gradient-aware frequency
attention block, which can localize the high-frequency com-
ponent heaviest distorted by stripes via a spatial gradient
calculator and assign customized weights according to their
sensitivity to the spatial gradient. At the same time, we design
a focal high-frequency loss item that is dynamically scaled
according to feature distance in the high-frequency domain.
Such designs facilitate the delicate recovery of high-frequency
components and can effectively avoid excessive or insufficient
denoising. Qualitative and quantitative experiments demon-
strate the superiority of the proposed method in complex and
varying HSI restoration task. In addition, we believe that the
idea of this work can also be flexibly transferred or promoted
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to other low-level vision tasks for future insightful research,
such as HSI restoration, enhancement, unmixing, and super-
resolution.
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