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ARTICLE INFO ABSTRACT

Keywords: The generalized mathematical model for HSI denoising or destriping lacks stability and uniqueness properties,
Image restoration failing to accurately portray the distribution and effects of stripes. Solutions following such a model would
Hyperspectral images inevitably result in excessive destriping of strip-free areas, leading to the loss of texture detail. To remedy
Denoising

the above deficiencies, we reformulate the destriping task and introduce a novel solution from the task
decomposition view. It is broken down into auxiliary sub-tasks involving stripe mask detection, stripe intensity
estimation, and HSI restoration, which greatly reduces the difficulty of solving such an ill-posed problem.
Based on this, we adopt a sequential multi-task learning framework and propose a stripes location-dependent
restoration network, termed SLDR, which integrates the distribution and intensity features of stripes to achieve
accurate destriping and high-fidelity restoration. Furthermore, we design a stripe attribute-aware estimator and
a weighted total variation loss function to capture the unique properties of stripes and adaptively adjust the
restoration weights of striped and non-striped regions. Extensive evaluation and comprehensive ablation studies
on synthetic and practical scenes show the effectiveness and superiority of our model and architecture.

Destriping
Multi-task learning

1. Introduction from Fig. 1, stripes in practical scenes can vary in distribution, in-
tensity, and orientation. Beyond that, with its significant structural

Line-pattern stripe noise is a prevalent degradation in remote sens- characteristics, widely or densely distributed stripes can both drown
ing images acquired from satellite-based and airborne imaging systems out the true radiance and natural texture features, or generate some
such as LANDSAT, and MODIS, especially more prone to arise in artifacts related to the stripes. The resulting signal distortions and loss
hyperspectral imaging systems, such as the Sentinel 2, EO-1 Hyperion of details will lead to the failure of many subsequent interpretations
imaging spectrometer, and the Chinese Gaofen-5 satellite [1-3]. As ev- and applications. In view of the fact that the striped pixels still con-
ident in Fig. 1, unlike random noise, stripe noise is majorly distributed tain radiance information, removing the stripes with high fidelity and

along the scanning direction of the imaging system, has a certain width
and extension length, and the overall grayscale value is brighter or
darker than its normal neighboring lines. Typically, stripe noise results
from the inconsistent response of the detection elements in the CCD,
and accompanies the mainstream motion patterns of large-scale remote
sensing imaging. It produces stripes or defect lines that share a fixed
direction in the scene [4-6]. Particularly, imaging with whisk-broom
or push-broom can evolve poor responses in the CCDs into horizontal
or vertical stripes, respectively.

In general, stripes flow through the whole row or column of the
remote sensing image, with a clear stripe edge different from the nor-
mal image, and the degradation intensity remains the same throughout.
However, real-world stripes can be more complex, with random lengths
or widths, drifting degradation intensity, and blurred edges. Observed

restoring the true radiance information is, therefore, essential and of
great significance to improve the potential value of remote sensing
satellite data in various applications [7-10].

Since complex degradation not only greatly increases the difficulty
of processing individual stripes, but also reduces the distribution regu-
larity of stripes, it raises a higher demand for the destriping method to
have universality. Fig. 2 shows three typical examples of stripe noise
to mimic real-world complex cases. In concrete, the damage caused by
stripe noise is apparently localized, and primarily the pixels around the
stripes are suffering the most. Besides, the specific location of stripe
noise may vary in bands of multi/hyperspectral remote sensing images
due to small differences in imaging time. In addition, stripe noise
may have various degrees of degradation across different land covers,
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(c) Gaofen-5 (Band 150, 151, and 152 from Baoqing City)

Fig. 1. Examples of striping data collected from various satellite sensors.

Fig. 2. Examples of three typical complex stripes cases: (a) Stripes clusters; (b) Stripes in uncertain length; (c¢) Stripes mixed with random noise.

implying its nonlinear property. Hence, an effective destriping and
denoising algorithm requires comprehensive analysis and consideration
for complex stripes.

Over the past years, numerous scholars have investigated and de-
veloped a series of studies. Most existing solutions, based on traditional
techniques involving statistical matching [11,12], digital filtering [4,6],
and total variation [13,14], focus on modeling the image prior and are
targeted to specific stripes, and these methods have limited applicabil-
ity. Very recently, work on this topic has been driven increasingly by
research on deep learning theory. Numerous studies have examined the
data-driven mechanism and learning features in a supervised manner,
achieving better results [15-17]. However, few studies have taken into
account the potential roles of stripes distribution, and they ignore the
relatively local corruption of stripes. Instead, they directly conduct
average destriping [6,13], leading to excessive damage for stripe-free
areas. These reasons result in their ill performance in recovering data
with high fidelity.

In a nutshell, these methods achieve some degree of improvement,
yet there still remains a legacy of unresolved issues. On the one hand,
degradation caused by stripe noise can be complicated and diverse.
The previously generalized mathematical model for additional noise
Y = X + N ignores some critical factors in real degraded images,
such as differences in stripe distribution or orientation and image blur
caused by stripes mixed with Gaussian noise. On the other hand, the
corruption caused by stripes are apparently highly related to their
location, only the stripe regions overlap with the background texture
in the feature space. However, most methods destriping the whole

data directly, which leads to the loss of texture information in regions
that are not contaminated by stripes, causing over-smoothing. Worse
still, many existing methods are performed in a patchy manner over
a limited receptive domain (limited spatial extent). Therefore, spatial
background information is not available for larger regions, which has
actually proven valuable for restoration.

To compensate for these limitations identified above in existing
strategies, we endeavor to develop a novel image restoration model that
can explicitly depict various stripe-based degradation in real scenes,
including severe stripes and complex mixed noise, and then design
an effective deep learning architecture based on it. Our ideas are as
follows.

First, we consider pertinent to study inconsistent degradation of
striped and non-striped regions. We begin by establishing a location-
dependent mathematical destriping model. A stripe binary mask, where
“1” indicates the presence of stripes and “0” otherwise, is integrated
to model the location information of stripes. To deal with real noisy
cases, our model also considers more complicated cases where stripes
are mixed with random Gaussian noise. Second, following the re-
formulated location-dependent model, we decompose the destriping
into several subtasks involving stripe mask detection, stripe intensity
estimation, and clean data restoration. The detected stripe mask and
the estimated stripe intensity can offer fresh insights to narrow the
solution space for recovering degradation and enable the network to
treat the striped and non-striped regions adaptively, achieving finer
restoration. Third, with three subtasks of HSI destriping, a multi-task
learning-based workflow, named stripes location-dependent restoration



E. Pan et al

network (SLDR), is organized. The highlight is that the three subtasks
are sequentially chained up in the workflow, providing incremental
support for the final HSI recovery. Although each of them has a specific
objective function, the proposed method collaborates with them and
trains the whole network with a joint loss function. The subsequent
feature aggregator and decoder facilitate accurate stripe noise removal
as well as high-quality HSI recovery. Finally, since the degradation
caused by stripes are location-dependent, we design an adaptive weight
term with a tailored bias for striped (more significant penalty) and
non-striped (minor penalty) regions. It further lessens spatial details
loss and alleviates the over-smooth phenomenon. Extensive experi-
ments are conducted to demonstrate the superiority of our method on
data with both synthesized and practical degradation. Particularly for
some heavily degraded images, our method achieves considerably good
results.
Our main contributions can be concluded in fourfold as follows:

An effective solution based on task decomposition is proposed,
which greatly reduces the difficulty of solving such an ill-posed
problem.

A stripes location-dependent restoration network for HSI restora-
tion is presented, achieving accurate denoising and high-fidelity
restoration.

A stripe attribute-aware estimator is developed, capturing the
unique properties of HSI stripes.

An adaptive weight term with a tailored bias for the total variance
penalty term is designed, weighting penalty to different degrees
on striped and non-striped regions.

2. Related works

2.1. Hyperspectral image destriping

Early works solving such an ill-posed problem as HSI destriping
mainly focus on finding appropriate priors. Some solutions heavily
relied on statistical data properties, like histogram matching [11]. In
contrast, some others have employed a variety of fundamental mod-
els, including frequency-domain transformation [4], low rank [18,19],
sparse representation [20], and total variation [13], etc. These methods
have alleviated this problem to some extent. However, it cannot be
ignored that most of them concentrate on isolated research on specific
stripes corruption of the given data and lack comprehensive and sys-
tematic analysis of different remote sensing images and various types
of stripes noise.

Noteworthy, the recent literature is abundant in deep learning
methods. For instance, Chang et al. [21] considered the destriping
task of remote sensing images as an image decomposition problem
and proposed a two-stream CNN. Based on this, HSI-DeNet [22] in-
corporates residual learning, dilation convolution and multi-channel
filtering to improve the denoising performance on top of CNN. Zhong
et al. [23] adopted a spaceborne-airborne data joint learning strategy to
balance training samples and test samples and used deep CNN to fully
describe the degradation of real HSIs in the spatial and spectral domains
to restore the original radiance information better. Guan et al. [24]
incorporated with the gated convolution strategy to capture the in-
terband and inner band correlative features. Although methods based
on deep learning have obvious advantages over traditional methods,
such algorithms lack interpretability, rely on training samples, and have
limited generalization capabilities.

On the basis of above limitations, we conclude that the existing
methods are not accurate enough to deal with complex stripes, and
their versatility is not ideal.
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2.2. Hyperspectral image denoising

Scholars also have developed a series of approaches to denoise HSI,
concentrating on modeling their typical properties such as nonlocal
similarity [25,26], sparsity [27], and tensor structure [14,28]. For
instance, Chang et al. [29] proposed a one-way low-rank tensor re-
covery method that additionally considers the non-local self-similarity.
NMoG [30] defines a non-independent identically distributed (non-
i.i.d.) mixture of the Gaussian to model the complicated HSI noise.
However, these advanced model-driven methods are still limited by sac-
rificing computational efficiency to achieve high performance. Worse
still, their performance also rely on manually optimized parameters
to eliminate noise in fixed intensity or type, can hardly generalize to
practical HSIs.

Very recently, more scholars have devoted to develop deep learning-
based methods, which directly learn a nonlinear end-to-end mapping
between noisy HSIs and clean HSIs. FastHyMix [31] exploits the low
rankness and spatial correlation of HSIs by adding a deep image prior,
which is extracted from a neural denoising network. Similarly, litera-
ture [32] proposes QRNN3D for deep denoising by introducing QRNN
into the 3D U-net structure. T3SC [33] advocates a hybrid approach
based on sparse coding principles to encode domain knowledge with
handcrafted image priors in an unrolled optimization procedure. MAC-
Net [34] takes the spectral low-rank model and spatial deep prior
into account for HSI noise reduction. N-Net [35] focus on intrinsic
attributes of HSI noise distribution along the spectral dimension to
achieve fine HSI restoration.

Although data-driven DL-based methods can recover the clean HSIs
by training the networks on a large number of training data, they do
not fully utilize the domain knowledge of HSIs such as the observation
model and underlying characteristics.

2.3. Multi-task learning

Mainstream deep learning-based approaches aim to train a specific,
reliable model for the objective function. However, features extracted
by such single-task models tend to be valid only for that task and do
not fully characterize the data. Once the task is closer to the complex
real-world situation, it requires the model to learn more comprehensive
and generalized features from the data. Multi-task learning (MTL) from
machine learning theory supports learning multiple tasks simultane-
ously [36-38]. It introduces inductive bias by setting auxiliary tasks
to improve the model generalization performance [39,40]. If tasks
share complementary information, they act as regularizers for each
other, which improves the prediction performance of each task [41].
In other words, MTL enhances the model generalization performance
and prediction accuracy by leveraging the knowledge of all associated
tasks and learning a shared representation across these tasks. It has
been broadly used in many computer vision tasks, such as image classi-
fication [42], action recognition [43], anomalous event detection [44],
etc.

Most MTL-based methods are designed based on existing CNN ar-
chitectures, and the MTL is typically integrated with either hard or
soft parameter sharing of hidden layers. For example, Cross-Stitch
Networks [45] contain one standard feed-forward network per task,
with cross-stitch units to allow features to be shared across tasks. The
self-supervised approach of [46], based on the ResNet101 architecture,
learns a regularized combination of features from different layers of a
single shared network. The Multi-Task Attention Network [42] intro-
duces a task-specific attention branch per task paired with the shared
backbone. AdaShare [47] presents an adaptive sharing approach that
decides what to share across which tasks to achieve the best recognition
accuracy while considering resource efficiency.

In this work, to enhance the model generalization performance and
achieve high-fidelity HSI restoration, we decompose the HSI destriping
task into several subtasks and introduce the MTL-based scheme. Such a
scheme not only encourages positive sharing among subtasks but also
minimizes negative interference by using task-specific blocks.
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Fig. 3. Illustration of our proposed multi-task learning-based pipeline for HSI destriping. It decomposes the HSI destriping into three subtasks: stripe mask detection, stripe intensity
estimation, and HSI restoration. Boxes with blue or red outlines are associated with M or I, respectively. Different colored outlines indicate that they employ blocks in the same
structure without sharing parameters. Similarly, arrows in blue or red symbolize their corresponding information flow. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

3. Methodology
3.1. Problem reformulation

Before elaborating on our method, we reformulate the task of HSI
destriping, which aims to restore a clean HSI from a noisy observation.
Mathematically, given a degraded HSI Y € RY%*" the issue can be
expressed as an inverse problem of the following widely used form:

X+S+D=Y, (@)

where S, D € RYwXh represents sparse stripes and random dense
Gaussian noise which brings degradations to Y, b denotes the spectral
dimension, w and h indicate the spatial size of HSI. Finding X from
Eq. (1) is generally acknowledged to be an ill-posed problem. More
unfortunately, the problem in the form Eq. (1) lacks stability and
uniqueness properties, failing to portray the distribution and effects of
stripes accurately. Solutions following such a model would result in an
inevitable excessive denoising of strip-free areas, leading to the loss of
texture detail.

To remedy the above deficiencies, we propose a novel location-
dependent stripes model that enables to depict stripe location and stripe
intensity separately as follows:

X+IoM+D=Y, 2

where o symbolizes the pixel-wise multiplication, I denotes the stripe
intensity, and M represents the binary stripe mask where “1” indicates
the presence of stripes and “0” marks the stripe-free regions. With the
introduced stripe intensity I and stripe mask M, the problem in the
form Eq. (2) can be solved in a smaller solution space. It allows a
different treatment between stripe and stripe-free regions, benefiting
high-fidelity HSI restoration.

3.2. Task decomposition

According to HSI destriping task described as Eq. (2), given the
observed noisy HSI Y, the desired solution is to estimate X, I, M. In
other words, the HSI destriping task in Eq. (2) can be decomposed
into stripes mask (M) detection, stripes intensity (/) estimation, and
clean HSI (X) restoration. Such an inverse problem can be converted
into an optimization problem based on a maximum-a-posteriori (MAP)
estimation, which reads as:

arg min ||X +IoM — Y12+ P, (M) + P(I) + P(X), 3)

where the first term is regarded as a fidelity term, while P, (M), P,(I)
and P.(X) act as regularization terms that encode prior information
(e.g., sparsity) on stripes mask, stripes intensity, and clean HSI, respec-
tively.

In essence, the estimation of M, I, and X are highly associated.
The high-fidelity restoration of X can derive benefits from accurately
predicting M and I. Therefore, we incorporate the predictions of these
three variables M, I, and X into a continuous and sequential process.
As shown in Fig. 3, we decompose the HSI destriping task and construct
a multi-task network that jointly and progressively performs HSI stripe
noise detection, estimation and removal.

First, the noisy HSI observation Y is encoded by a structure encoder,
where a residual dense block (termed RDB) is employed to initially
explore structural feature F of the input. RDB [48] is proposed for
image super-resolution with the merits of adaptively learning features
from local and global via dense connection and hierarchical feature
fusion. In this research, we utilize 3D convolution to customize the
existing RDB into 3DRDB as structural feature encoder for HSI cube
(refer to Fig. 4), which provides effective and reliable HSI structural
feature F in the joint spectral and spatial domain. Hereby, on the basis
of the extracted HSI structural feature F, we design an stripe attribute-
aware estimator to explore intrinsic attributes of HSI stripes, and we
utilize one for detecting predicting stripes mask M and another for
estimating stripe intensities /. The concrete details will be introduced in
Section 3.3. Next, we aggregate the extracted HSI structural feature F,
the detected HSI stripe mask M, and the estimated stripe intensities I in
the feature aggregation block according to Eq. (2). A decoder consisting
of several 3D convolutional layers (see Fig. 4) is followed for further
stripe noise estimation. Finally, the noisy input Y is integrated for the
final noise removal and the clean HSI X reconstruction.

Additionally, we train and optimize the network by multiple loss
functions, involving a specific weighted TV loss is designed for random
dense Gaussian noise, i.e., D in Eq. (2), which benefits in yielding
a reliable and robust end-to-end HSI recovery model. The related
description will be detailedly introduced in Section 3.4.

3.3. Stripe attribute-aware estimator

Intuitively, the degradation of HSI caused by stripe noise is region-
dependent, demonstrating that accurate detection of damaged regions
and estimation of their diverse severity facilitate identifying and re-
moving stripe noises. Thus, the critical issue here turns to capture the
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Fig. 4. Detailed architecture of encoder and decoder of the proposed method.
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Fig. 5. The architecture of stripe attribute-aware estimator for estimating stripe mask M and stripe intensity I. It mainly consists of a spatial direction-aware convolution block

and a sparse pyramid-like convolution block.

intrinsic attributes of HSI stripes, as mentioned above, unidirectionality
and sparsity, which would directly contribute to predicting stripe noise
mask M and stripe intensity 1.

To this end, we propose a stripe attribute-aware estimator to learn
the discriminative features of HSI stripes. It perceives and learns the
special attributes of stripe noise through two main blocks: (1) a spa-
tial direction-aware convolution block, which consisting of four spe-
cific direction-aware convolution kernels (including vertical, horizon-
tal, main-diagonal, and anti-diagonal), empowers the model with the
ability to robust handle stripe noise in different directions; (2) a sparse
pyramid-like convolution block, comprising multiple 3D convolutional
layers with different dilation rates and receptive fields, satisfies the
attribute of stripe noise being sparsely distributed in both spatial and
spectral domains.

Concretely, as shown in Fig. 5, the extracted HSI structural feature
F is fed to the first block, i.e., the spatial direction-aware convolution
block, which contains four convolution paths with kernels in different
directions. This block is tailored toward the unidirectional attribute of
stripes. The vertical and horizontal convolution paths are simply with
a kernel size of 3 x 1 x 3 and 3 x 3 x 1, which enables identifying
HSI stripes caused by vertical push-broom and horizontal whisk-broom
scanning. The main-diagonal and anti-diagonal convolution paths are
implemented by initializing a convolution kernel of size 3 x 3 x 3 and
then filtering it with the corresponding identify matrix. Adding these
two paths enables our model to deal with the oblique stripes caused by
geometric correction. These four direction-aware convolution paths are
concatenated to an additional 1 x 1 x 1 convolution layer for further
feature aggregation.

After that, considering the spatial-spectral sparsity of HSI stripes,
we design a sparse pyramid-like convolution block, which consists of
three 3D convolution paths with different dilated rates. The dilated
convolution [49] updates the weight of pixels at dilation rate steps and
thus enlarges their receptive fields without resolution sacrifice. At the
same time, with larger dilation rates, the parameters of each convo-
lution layer become more sparse, promoting the learning attribute of

sparsity in HSI stripes. As illustrated in Fig. 5, these three paths are
initially setting with 3 x 3 x 3 convolution and respectively dilated
in rates {1,2,3}. And they have their receptive fields with the size of
3x3x3,5x5x5,and7 x7 x 7. Besides, a1 x 1 x 1 convolution
layer is also followed to aggregate features from these three paths.

Particularly, it is worth mentioning that the designed stripe
attribute-aware estimator is employed twice in our method. One is
for detecting stripes mask M based on feature F, and another is for
estimating stripes intensity I based on F and M. So, the two estimators
do not share the parameters, and their output settings are different, too.
The one for predicting binary mask M is set with [2, b, w, h] and the
other for estimating I with [1, b, w, h].

3.4. Network training

Denote the inverse recovery functions modeled by the proposed
network for stripes mask M, stripes intensity I, and stripes-free HSI
X as Fy (), Fi(-), Fx(-), respectively. Symbolize all learned parameters
of the network as ©. We train the proposed multi-task-based network
via end-to-end learning, optimizing by a combination of multiple loss
functions involves mask loss £y;(©), intensity loss £;(0), and recovery
loss Lx(O).

Since the value of stripe mask M is constrained as binary, we
introduce cross-entropy loss function Lg(-) for £,1(0) as below:

Lp(0) = Lg(Pu(X;0), (Y = X)). 4
Intensity loss £1(0) is formulated with Lysg(-) as:
L1(0) = Lyap(F1(X;0),Y — X). )

In particular, considering the random Gaussian noise D that accom-
panies actual satellite imaging according to Eq. (3), we define the
recovery loss Lx(0) with two items as Eq. (6):

Lx(0) = Lyap(Fx(X;0), X) + @ - Lyry, (6)
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where one based on mean absolute error Lyp(-) maintains fidelity
while the other one Ly designed on the basis of Lqy(-), which is
specifically configured as a learnable term and capable of removing
random Gaussian noise. w is setting as le + 2 to adjust the weight of
Lwry- The Ly is formulated as:

Loy =argmin Y\ 3" W, \/ DUV, X2 + (V- X 02, %)
i k

where i, j,k denotes the pixel-wise position in spatial and spectral
dimensions. The highlight weight term W, ; can be expressed by the
following equation:

W ; =]\;l,-qj +e, 8

where W, ; is updated according to the estimated M. It indicates that
stripe region can be further smoothing while ¢ in Eq. (8) ensures non-
stripe region is processed with a slight smoothing, filtering the potential
random Gaussian noise. W, ; empowers Lyry a learnable and versatile
item.

We integrate £;(0), L£;(0), and Lx(0O) to train the network param-
eterized by O as Eq. (9), achieving jointly estimate M, I, and X based
on noisy observation Y:

Liotal(©@) = A1 - Lyy(O) + 4, - L1(O) + 43 - L(O), (C)]

where parameters A,,4,, and A; are weighting factors for balanced
training. To ensure balanced convergence, they are set to 1, 1, and le—2,
respectively, based on experiments. The network is trained to minimize
the total loss L,,,;(©) by back-propagation.

4. Experiments
4.1. Experimental settings

4.1.1. Data

We conduct destriping experiments on data with synthetic stripe
noises and real satellite HSIs. For training, datasets are from publicly
available HSI dataset ICVL,! [50] where 120 out of 201 practically
noise-free HSIs are sampled as the training set in our experiment, along
with 5 for validation, the rest constitute the testing set. Each HSI
cube in ICVL has a spatial resolution of 1392 x 1300 and a spectral
dimension of 31. We also conduct synthetic mixture noises experiments
on the publicly available HYDICE image of Washington D.C. Mall,?
which has a resolution of 1280 x 307 x 191. To further demonstrate
the generalization ability of our model, we also test real HSIs collected
from satellites, involving the EO1 Hyperion dataset® with 166 bands,
the GF-5 Baoqing dataset and the GF-5 Wuhan dataset* with 155 bands
acquired by the Advanced Hyperspectral Imager in GF-5 satellite [19].

4.1.2. Synthetic noise settings

We mimic a series of synthetic stripe noisy cases involving (1)
random stripes; (2) random stripe clusters, which means that several
adjacent stripes have similar intensities; (3) random stripes in uncertain
length, where some broken stripes may possess arbitrary length; (4) a
mixture of noises, where stripes coexists with non-i.i.d Gaussian noise.
In addition, we configure some associated settings to maximize the
imitation of practical noise contamination. Specifically, two-thirds of
bands, 5% to 45% of columns or rows in the first three cases, and
one-third of bands, 5% to 35% of columns or rows for the last case,
are randomly selected to add stripe noise. Plus, the non-i.i.d. Gaussian
noise in the last case is added to one-third of the bands with a random
intensity ranging in the interval [10,70].

http://icvl.cs.bgu.ac.il/hyperspectral/
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html.
http://hipag.whu.edu.cn/resourcesdownload.html
http://hipag.whu.edu.cn/dataset/
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4.1.3. Training details

The training patches have a spatial size of 64 x 64 and the complete
spectral dimension 31. To improve the robustness of training, we scale
the patches with a rate in {1,0.5,0.25} and randomly rotate them
to further diversify the training set. Besides, 80 epochs are set up
throughout the training process. The batch size (i.e. 16) is employed
to stabilize the training. Parameters are initialized with Kaiming Ini-
tialization and updated by Adam Optimizer. The learning rate is set
to 0.001 and decreases exponentially with epochs until the validation
performance does not increase anymore. Noteworthy, all deep learning-
based methods run on the same GPU RTX 3090Ti, while other methods
run on the same CPU i9-10940H.

4.1.4. Evaluation metrics

We employ five mainstream quantitative metrics on the denoised
results to measure the denoising performance, inclusive of mean peak
signal-to-noise ratio (MPSNR), mean structure similarity (MSSIM),
mean feature similarity (MFSIM), as well as mean spectral angle
mapper (MSAM), mean relative dimensionless global error synthesis
(MERGAS). The MPSNR, MSSIM, and MFSIM are used for spatial-
based image quality evaluation, and a larger value represents better
denoising performance. In contrast, MSAM and MERGAS are spectral-
similarity-based metrics, and a smaller MSAM and MERGAS value
implies better spectral fidelity for spectral dimension. Additionally,
we also record the average running time of each comparative method
under all noisy cases. Noteworthy, for deep learning-based methods,
the running time refers to the average time consumed per HSI with the
size of 512 x 512 x 31 during the testing phase.

4.2. Results on HSIs with synthetic noises

To verify the effectiveness of our method in stripe noises removal,
we compare it with several existing comparative HSI destriping meth-
ods and state-of-the-art methods for mixed HSI noises removal : LRTD
[18], NMoG [30], LRTDGS [14], FastHyMix [31], SGIDN [23],
QRNNS3D [32], T3SC [33], MAC-Net [34], DnRCNN [24], N-Net [35].
For traditional methods,we adopt the publicly available source code
and the given parameters from the authors. For deep-learning based al-
gorithms, we have reproduced them based on corresponding references
and some public code. To ensure the fairness and credibility of the
validation, we have retrained these algorithms using the experimental
settings described in this paper.

4.2.1. Spatial quality comparisons

The visual results of some representative scenes are shown in Fig. 6.
The first three cases, which cover different types of stripes, exhibit un-
stable destriping performance among the five conventional algorithms
shown in the first-row. As evident in the results of LRTD in Fig. 6(a)
and (c), LRTDGS in Fig. 6(b), and FastHyMix in Fig. 6(c), it is obvious
that some stripes still remain, and these methods fail to completely
remove all stripes. Moreover, LRTDGS in Figs. 6(a) and (d) presents
over-smoothed and blurred results due to excessive destriping. In brief,
these methods cannot cope with to different types or intensities of
stripes corruption because they are initially trained for targeted noisy
cases with specific parameter settings. Compared with advanced deep-
learning-based methods such as SGIDN, QRNN3D, T3SC, and MAC-Net,
DnRCNN, N-Net, our proposed method is more delicate in retaining
details, and the recovered image obtains optimal visual quality. Similar
conclusions can also be drawn by observing the results of the last
case with mixed noise. Notably, algorithms such as LRTD, SGIDN, and
DnRCNN, designed only for stripe noise, fail to remove mixed noise
and exhibit poor performance. In contrast, our proposed SLDR achieves
the best denoising results with a superior model, achieves high-fidelity
recovery, and exhibits fewer artifacts and sharper edges.
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Fig. 6. Denoising results on ICVL dataset with synthetic complex noise. Examples for all the competing methods on band 5, 12 and 20 of the ICVL dataset under 5 complex noise
cases are presented respectively. For each group of results, from top to bottom, left to right: Noisy Input, LRTD [18], NMoG [30], LRTDGS [14], FastHyMix [31], SGIDN [23],

QRNN3D [32], T3SC [33], and MAC-Net [34], DnRCNN [24], N-Net [35], Proposed SLDR.

4.2.2. Spectral fidelity comparisons

To verify the preeminent of our method in spectral fidelity, we select
one typical pixel in different cases and draw the recovered spectral
curves of comparing methods in Fig. 7. Apparently, compared to the
other results, the spectra curve recovered by our proposed SLDR is
much closer to the reference, and our proposed method yield optimal
results in all synthetic cases on ICLV dataset. It reveals that our method
accurately eliminates the negative effect of noise in the spectral domain
and further confirms the advantage of our model in maintaining high
spectral fidelity.

4.2.3. Quantitative comparisons

As the quantitative statistical results shown in Table 1 indicate,
the compared methods, particularly the traditional methods LRTD and
LRTDGS, exhibit unsatisfactory results, while NMoG and FastHyMix
occasionally demonstrate competitive image restoration performance,
with some metric values even ranking the top three. However, the
performance of these methods is unstable because they can only handle

specific noise degradation under customized parameter settings. On the
other hand, SGIDN, a deep learning-based method specifically designed
for stripe removal, shows a slight advantage in terms of time consump-
tion and MFSIM index, with mediocre performance on other metrics.
In contrast, our proposed SLDR demonstrates more solid performance,
achieving an average gain of 21 dB in the MPSNR index and reaching
0.98 or 0.99 in MSSIM and MFSIM indices, even in cases severely af-
fected by mixed noise, showing competitiveness. This demonstrates the
robustness and effectiveness of our proposed SLDR, which decomposes
HSI destriping into a multi-task learning-based framework, releasing
the difficulty of restoration. However, it is worth noting that in the
second and third cases, SLDR did not achieve the best performance in
spectral MERGAS and in the fourth case, spectral MSAM indices, even
dropping to lower values and ranked second.

In summary, our SLDR significantly improves spatial visual quality
and spectral fidelity indices under all synthetic noise conditions, with
a slight sacrifice in speed (0.27 s slower on average than SGIDN). This
indicates that our proposed method is a promising approach for HSI
destriping and restoration.
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Fig. 7. Comparisons between the recovered spectra of the selected pixel by some advanced comparative methods under all noisy cases from the ICVL dataset are presented,

respectively.
4.3. Denoising on remote sensing HSIs with synthetic noise

The experimental results shown in Fig. 8 and Table 2 demonstrate
the effectiveness and robust performance of the proposed SLDR in
handling complex noise degradation in remote sensing scenes.

Fig. 8 shows denoising results of ROIs on band 112 in the Washing-
ton D.C. Mall dataset. It can be seen that the proposed SLDR restores
the cleanest denoised image and the most accurate spectral recovery
compared to the other methods. Table 2 further quantitatively evalu-
ates the performance of the proposed method and the other competing
methods. FastHyMix achieves the best in MPSNR, MERGAS and Times,
while NMoG gets the best on MSSIM and MFSIM. The proposed SLDR
achieves the top three values of all metrics, indicating its robust de-
noising performance in remote sensing scenes. On the other hand, the
performance of the other methods, neither traditional methods LRTD,
LRTDGS, nor deep learning-based methods SGIDN, QRNN3D, and MAC-
Net, is relatively poor, with lower and ordinary performance in all
indicators. One possible reason is that with regard to all deep-learning-
based methods, we directly adopted the trained model (all of these
methods are trained on ICVL dataset) to test on this new dataset.

Overall, the experimental results demonstrate that the proposed
method outperforms the other competing methods in handling com-
plex noise degradations in remote sensing scenes. The generalization
capability of the proposed SLDR to real-world HSIs and its lightweight
scale are additional benefits. These results provide valuable insights
for advancing the development of effective and robust HSI denoising
methods.

4.4. Results on real satellite HSIs

We directly utilize the model trained on synthetic noise data from
the ICVL dataset to test the real remote sensing datasets to verify
its denoising performance and generalization ability. Figs. 10 and 11
illustrate denoising result on GF-5 Baoqing dataset and GF-5 Shang-
hai dataset, and Fig. 9 represents results on EO-1 Hyperion dataset.
Due to environmental factors such as atmosphere, water, or hardware
factors like photon shot within the sensor, these data sets are heavily
contaminated with noise. We can easily observe complex noise in some
bands involving random noises, stripes, and their mixtures, resulting in
a big challenge to recover clean HSIs. Also, the degradations on these
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Fig. 8. Comparison in denoising results under complex synthetic mixture noise case on the Washington D.C. Mall dataset. (a) Denoising results of ROIs on band 112; (b) The
spectra of the selected pixel recovered by comparative methods.
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Fig. 9. Comparison in denoising results on EO-1 Hyperion dataset. For each group of results, from the left to right: Noisy Input, LRTD [18], NMoG [30], LRTDGS [14], SGIDN [23],
QRNN3D [32], MAC-Net [34], and our proposed SLDR.

Input LRTD LRTDGS SGIDN MAC-Net DnRCNN N-Net Our SLDR

Band 152

Band 153

Fig. 10. Comparison in denoising results on GF-5 Wuhan dataset. For each group of results, from the left to right: Noisy Input, LRTD [18], NMoG [30], LRTDGS [14], SGIDN [23],
QRNN3D [32], MAC-Net [34], and our proposed SLDR.
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Table 1
Quantitative results of all competing methods under all synthetic stripe noise cases on the ICVL dataset. The best results are shown in red, the second best ones are shown in
blue, and the third ones are shown in green.

Metrics Noisy LRTD NMoG LRTDGS FastHyMix  SGIDN QRNN3D T3SC MAC-Net DnRCNN N-Net SLDR
[18] [30] [14] [31] [23] [32] [33] [34] [24] [35]

Case 1: Random stripes
MPSNR 1 25.878 38.195 41.839 31.633 38.650 42.304 41.006 35.464 36.067 37.487 38.208 46.977
MSSIM 1 0.5624 0.8963 0.9656 0.7392 0.7572 0.9705 0.9696 0.9054 0.9267 0.9442 0.9338 0.9885
MFSIM 1 0.8166 0.9881 0.9945 0.8814 0.9010 0.9971 0.9910 0.9841 0.9867 0.9845 0.9761 0.9965

MERGAS |  24.2725 5.7626 3.4657 17.9397 13.9474 3.5950 3.2811 6.2184 7.8546 4.7506 4.7749 1.8716
MSAM |  0.5491 0.1747 0.0950 0.4584 0.3723 0.1407 0.1005 0.2082 0.1682 0.1254 0.1365 0.0541

Case 2: Random stripe clusters

MPSNRt  29.305 38.541 45.282 35.301 43.793 35.367 43.296 39.166 41.218 44.518 40.899 45.387
MSSIM  0.8475 0.9036 0.9846 0.9234 0.9746 0.8682 0.9838 0.9600 0.9762 0.9863 0.9738 0.9882
MFSIM t  0.9555 0.9899 0.9934 0.9601 0.9887 0.9727 0.9945 0.9897 0.9939 0.9960 0.9897 0.9949
MERGAS |  15.8683 5.2479 2.0872 10.9627 1.9896 5.9233 2.3289 3.6735 3.5689 2.0036 3.8231 2.0313
MSAM |  0.3476 0.1642 0.0562 0.2156 0.0468 0.1911 0.0689 0.1189 0.0811 0.0534 0.1027 0.0524
Case 3: Random stripes in uncertain length
MPSNR t  27.751 28.144 43.938 39.826 45.155 38.093 45.167 40.590 39.616 41.200 34.713 49.227
MSSIM t  0.6353 0.6426 0.9745 0.9521 0.9851 0.9433 0.9865 0.9586 0.9667 0.9713 0.8368 0.9934
MFSIM t  0.8820 0.8905 0.9934 0.9770 0.9888 0.9850 0.9959 0.9921 0.9947 0.9947 0.9844 0.9984
MERGAS |  19.3117 18.1246 3.5657 3.3383 1.0883 4.8502 1.7300 3.4453 4.4488 3.0108 5.8024 1.1294
MSAM |  0.4225 0.4152 0.0834 0.0680 0.0462 0.1531 0.0473 0.1146 0.0947 0.0749 0.1541 0.0345
Case 4: Random stripes coexisting with Gaussian noise
MPSNR 1 19.978 24.082 38.628 35.209 34.021 39.416 43.012 41.259 37.151 41.202 44.404 44.981
MSSIM t  0.2773 0.3734 0.9376 0.8800 0.7984 0.9584 0.9787 0.9681 0.9223 0.9723 0.9839 0.9860
MFSIM 1 0.6973 0.7381 0.9871 0.9423 0.9390 0.9855 0.9923 0.9904 0.9691 0.9895 0.9950 0.9954
MERGAS |  31.9248 30.7352 5.0105 6.1648 7.2914 4.3682 2.1064 2.8592 4.2165 2.5410 1.8708 1.8313
MSAM |  0.6842 0.6793 0.1215 0.1586 0.1995 0.1578 0.0523 0.0835 0.1191 0.0574 0.0542 0.0533
TIME(s) | - 357.31 258.02 75.23 2.35 0.42 0.84 1.11 3.21 1.27 0.56 0.69
Table 2

Quantitative results of all competing methods under complex synthetic mixture noise case on Washington D.C. Mall dataset. The best results are shown in red, the second best
ones are shown in blue, and the third ones are shown in green.

Metrics Noisy LRTD [18] NMoG [30] LRTDGS [14] FastHyMix [31] SGIDN [23] QRNN3D [32] MAC-Net [34] SLDR
MPSNR 1t 18.710 22.778 34.516 27.271 34.793 26.105 28.288 34.111 34.581
MSSIM 1 0.6138 0.6599 0.9818 0.9174 0.9783 0.8949 0.9499 0.9744 0.9751
MEFSIM 1t 0.7810 0.8050 0.9855 0.9391 0.9825 0.9257 0.9511 0.9691 0.9780

MERGAS | 0.4880 0.4108 0.0842 0.0982 0.0702 0.1567 0.1132 0.0761 0.0790
MSAM | 21.7720 20.9618 4.0246 7.2009 3.3130 8.5653 6.5941 3.6026 4.2533
TIME(s) | - 326.51 143.63 59.13 0.44 3.41 5.45 14.13 4.56

Table 3

Ablation study of the effectiveness of the task decomposition strategy in our method on the ICVL dataset. We adopt the results by MPSNR, MSSIM to evaluate the restoration
performance, and the Params and FLOPs of these networks to measure the model complexity. The results of the proposed SLDR are shown in bold.

No. Stripe mask detection Stripe intensity estimation HSI restoration MPSNR MSSIM Params(#) FLOPs

1 X X v 45.788 0.9756 198.21K 25.17G
2 X v v 46.213 0.9861 231.32K 29.37G
3 v X v 47.175 0.9869 231.63K 29.41G
4 v v v 48.766 0.9972 264.74K 33.61G

Band 93

Band 151

Input LRTD LRTDGS SGIDN MAC-Net DnRCNN N-Net Our SLDR

Fig. 11. Comparison in denoising results on GF-5 Baoging dataset.For each group of results, from the left to right: Noisy Input, LRTD [18], NMoG [30], LRTDGS [14], SGIDN [23],
QRNNS3D [32], MAC-Net [34], and our proposed SLDR.
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Fig. 12. The destriping results and the residual stripes maps in verifying the effective-
ness of the task decomposition strategy in our method on the ICVL dataset. Figures
from the left to right are corresponding to the ablation studies No.1 ~ 4 setting in
Table 3, respectively.

datasets indicate that various types of stripe noise we simulated above
are very close to the practical situation.

Aiming at a fine comparison of the generalization capabilities of the
comparative algorithms, we select two bands in each dataset suffering
from different intensities of noise contamination as examples. Some red
marks circled in the figure above highlight areas, which are not very
noticeable with residual noise or suffering from excessive denoising.
Zooming in allows for a more detailed comparison. It is apparent that
our method achieves better results in visualization due to its strong
capability of stripes location-awareness, locating stripes more precisely
and recovering texture and edge details more delicate. Moreover, com-
pared to other advances destriping or denoising methods, which seems
suffering from inadequate or excessive destriping, the proposed SLDR
still performs stably in dealing with different contamination levels in
various wavebands. Such results further confirm the robustness of our
proposed method in a real-world scenario.

4.5. Ablation studies

To verify the effectiveness of our SLDR downright, we perform com-
prehensive ablation studies on the ICVL dataset. The ablation studies
mainly concern the effectiveness of the task decomposition strategy,
the advantages of the MTL-based framework, the effectiveness of the
designed stripes-attribute aware block, as well as the incomes brought
by the WTV loss function in the proposed SLDR. We adopt MPSNR,
MSSIM, and the total number of parameters of the network as the
evaluation metrics. The proposed SLDR is the benchmark of these
ablation experiments.

4.5.1. Effectiveness of task decomposition strategy

A major contribution of this work is that we introduce multi-task
learning based framework into HSI destriping. As aforementioned, we
have decomposed HSI destriping into stripe mask detection, stripe
intensity estimation, and HSI restoration. Table 3 provides results on
whether or not adopting task decomposition strategy and whether or
not taking all subtasks. The improvement of destriping performance
in adding any of these subtasks is remarkable though there is a bit
of additional parameters increasement. For instance, adding subtask of
stripe mask detection brings about 0.5 dB incomes in MPSNR and 1%
increases in MSSIM, adding subtask of stripe intensity estimation offers
about 1.5 dB incomes in MPSNR and 1% increase in MSSIM, and adding
both of them provides much higher increases in all metrics with nearly
33K sacrifices in model parameters. This is also demonstrated visually
in Fig. 12, where the result for the fourth setting (i.e., the proposed
SLDR) is cleaner with almost no residual stripes due to the auxiliary
learning of subtasks.
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(a) Parallel structure

(b) Sequential structure

Fig. 13. Illustrations of potential structures for MTL-based network.

Table 4

Ablation study of potential structures for MTL-based framework. We adopt the results
by MPSNR, MSSIM to evaluate the restoration performance, and the Params and FLOPs
of these networks to measure the model complexity. The results of the proposed SLDR
are shown in bold.

No. Sequential Parallel MPSNR MSSIM Param(#) FLOPs

1 PA-MI 46.567 0.9671 264.74K 33.61G
2 MIX 48.766 0.9972 264.74K 33.61G
3 IMX 47.067 0.9869 264.74K 33.61G

(a) (b) (©)

Fig. 14. Ablation study of potential structures for MTL-based framework. (a) PA-MI;
(b) MIX (the proposed SLDR); (c) IMX. For each column of results, from top to bottom:
restored X; detected stripe mask M; estimated stripe intensity I.

4.5.2. Advantage of different MTL-based network architectures

The selected architecture of the proposed SLDR is illustrated in
Fig. 3. However, there are others potential MTL-based structures for
cooperative estimating M, I and X in Eq. (3), as shown in Fig. 13. We
have tested potential choice of network architectures, involving parallel
structure and sequential ones in different orders.

« Parallel structure: As presented in Fig. 13(a), estimating stripe
mask M and stripe intensity I in a parallel structure first, and
then integrating them in restoring X, denoted as PA-MI.

+ Sequential structure A: As presented in Fig. 13(b), restoring X fol-
lowed by detecting stripe mask M and estimating stripe intensity
I in order, which is marked as MIX and the final choice of out
proposed solution.

+ Sequential structure B: Restoring X followed by predicting I and
M in order, marked as IMX.
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i

Fig. 15. Ablation study of the designed stripe-attribute aware estimator on the ICVL
dataset. (a) Only with the direction-attribute aware block; (b) Only with the sparse-
attribute aware block; (c) With the designed stripe-attribute aware estimator. For each
column of results, from top to bottom: restored X; detected stripe mask M; estimated
stripe intensity I.

(b)

(a)

Table 5

Ablation study of the designed stripe-attribute aware estimator on the ICVL dataset.
We adopt the results by MPSNR, MSSIM to evaluate the restoration performance, and
the Params and FLOPs of these networks to measure the model complexity. The results
of the proposed SLDR are shown in bold.

No. Direction Sparse MPSNR MSSIM Param FLOPs

1 X v 43.773 0.9500 259.39K 32.92G

2 v X 45.389 0.9837 220.91K 28.03G

3 v v 48.766 0.9972 264.74K 33.61G
Table 6

Ablation study of the Lyy(-) on the ICVL dataset. We adopt the results by MPSNR,
MSSIM to evaluate the restoration performance, and the Params and FLOPs of these
networks to measure the model complexity. The results of the proposed SLDR are shown
in bold.

No. Loy() Loy () MPSNR MSSIM Param(#) FLOPs

1 X X 48.446 0.9817 264.74K 33.61G
2 v X 48.793 0.9872 264.74K 33.61G
3 x v 49.093 0.9974 264.74K 33.61G

Table 4 offers quantitative results of these three structures, indicating
that our final choice, named MIX, have better performance in MPSNR
and MSSIM metrics without any extra computation cost. Besides, the
predicted X, M and I of these three structures in Fig. 14 also reveals
that MIX produced more precise results, indicating the superior of the
proposed SLDR.

4.5.3. Effectiveness of the designed stripe attribute-aware estimator

This estimator consists of a direction attribute-aware block and a
sparse attribute-aware block. To verify its effectiveness, we conduct
ablation study on each block and present results in Table 5 and Fig. 15.
Obviously, estimation of stripe noise with either attribute-aware block
alone suffers from a certain deficiency, resulting in unsatisfactory re-
covery results. It also suggests that the designed estimator can precisely
aware attributes of stripes, offers abundant information for subsequent
destriping and high-fidelity restoration.

12
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Fig. 16. Example of the stripe and deadline noise removal result and intermediate
results (involving estimated mask, intensity, and the output of decoder) by the proposed
method on ICVL dataset with synthetic degradation.
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Fig. 17. Example of the stripe and deadline noise removal result and intermediate
results (involving estimated mask, intensity, and the output of decoder) by the proposed
method on GF5-Baoging dataset.

4.5.4. Effectiveness of the WTV loss

Table 6 lists quantitative comparisons of ablating Lry(-) and
Lywrv(+). It is observed that, adding L1y (-) benefits a bit on destriping
results, and the updated Ly (-) boosts such benefits more without any
increase of computation burden.

4.5.5. Effectiveness on handling deadlines or deadpixels

As shown in Fig. 16, it is apparent that the estimated mask M can
locate the stripe degradation more accurately, which provides reliable
prior information for subsequent stripe noise removal and the recovery
of deadlines and dead pixels. With the guidance of the estimated M,
the model can perceive the degradation and missing information in
the image more precisely. In addition, the estimation of stripe noise
with varying distributions and intensities in different bands, as shown
in the figure, is also accurate, which demonstrates the robustness of
our proposed method. Besides, we also add extend validation on real-
world HSIs. As illustrated in Fig. 17, It is evident from the result of GF5
Baoging dataset that the proposed method is also robust to real-world
HSI restoration (either stripes or deadlines).

5. Conclusion

This work begins with reformulating the mathematical description
of the HSI destriping and denoising task. We advocate a novel solution
based on task decomposition, which comprises stripes mask detection,
stripe intensity estimation, and HSI restoration. Our contribution can
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be concluded below: (1) We raise a multi-task learning solution and
introduce auxiliary sub-tasks, offering fresh insights and releasing the
difficulty to narrow the solution space for recovering degradation. .
(2) We propose a stripe location-dependent network, termed as SLDR,
integrating the distribution and intensity of stripe noise to achieve more
accurate restoration. (3) We design a stripe attribute-aware estimator
that enables capturing directional and sparsity by combining different
convolutional dictionary-like blocks. (4) We develop Lyy(-), which
benefits in obtaining higher fidelity recovery results by adaptively
adjusting the weights of restoring striped and non-striped regions.
As demonstrated by abundant evaluation and comprehensive ablation
studies on synthetic stripes and real-world HSIs, our proposed SLDR
outperforms state-of-the-art methods designed for either destriping or
denosing.
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