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a b s t r a c t 

Hyperspectral image (HSI) denoising is an ill-posed problem, leading to integrating proper prior knowl- 

edge about hyperspectral noise is critical to developing an efficient denoising method. Most existing 

methods share a common assumption that all bands have equal noise intensity. However, such assump- 

tion runs counter to the practical HSIs, leading to unpleasant denoising results. To tackle this, we intend 

to investigate the intrinsic properties of real HSI noise in the spectral dimension and construct a novel 

denoising framework bootstrapping by spectral noise distribution ˆ N , termed ˆ N -Net. On the one hand, we 

develop dense and sparse recurrent calculations, exploiting intrinsic properties of HSI noise ( i.e. , diversity, 

dense dependency, and global sparsity) to estimate spectral noise distribution. On the other hand, having 

the estimated spectral noise distribution, we develop a bootstrap mechanism with a repetitive emphasis 

on its guidance for subsequent spatial noise separation and clean HSI recovery, ensuring a more delicate 

denoising effect. In particular, we verify that the proposed denoising framework can achieve promising 

denoising performances due to the merit of spectral noise distribution bootstrapping, which also pro- 

motes new insights for future related research. The code is avaliable at https://github.com/EtPan/N-Net . 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Benefiting from owing abundant spectral information, hyper- 

pectral remote sensing technology has immeasurable potential in 

road applications, like face recognition [1] , spaceborne monitor- 

ng [2] , sea-surface observation [3] , and remote sensing interpreta- 

ion [4,5] . However, constrained by physical and optical mechanism 

actors, the complex imaging chain of hyperspectral image (HSI) 

s inevitably affected by various factors such as atmospheric con- 

itions, environmental illumination [6,7] , and imaging sensors [8] . 

hey may introduce multiple randomly distributed noises to HSIs, 

or instance, dense Gaussian noise, sparse noise or structural noise. 

oises like these can adversely affect HSI, leading to a significant 

oss of visual quality. Worse still, it limits qualities of subsequent 

SI interpretations, such as super-resolution [9] , classification [10] , 

nd target detection [11] . 

Consequently, considering the varied noise degradation existing 

n HSIs, investigating a noise removal model with solid robustness 

as essential significance. It has attracted considerable academic 
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ttention in the past decades. A great deal of denoising techniques 

as been proposed, involving traditional algorithms [12–15] and re- 

ent deep learning-based algorithms [16–19] , which are detailed 

eviewed in Section 2 . There is a notable fact that HSI noise usually 

beys a complex distribution in the spectral dimension. However, 

ost existing denoising algorithms assume that all bands share 

he same noise intensity and simply treat them equally [20–22] , 

hich is divorced from the practical scenario to a greater or less 

xtent and causes gross spectral distortion. Taking the EO-1 Hy- 

erion dataset [23] as an example, we demonstrate Figs. 1 and 

 for auxiliary understanding. Some apparent noise characteris- 

ics can be summed up as follows: (1) Diversity. The noise inten- 

ities across different bands exhibit noticeable differences, which 

an be attributed to variations in sensor sensitivity across various 

SI bands. (2) Dense local correlation. The noisy images and sta- 

istical histograms from band 88 to 96 in Fig.r1 reveal that ad- 

acent bands exhibit strong correlations in noises. Since images 

n the contiguous spectrum are generally collected under slight 

eviations in both sensor settings and wavelengths, noises along 

djacent bands consequently tend to be more or less similar. (3) 

lobal sparsity. As illustrated in Fig. 1 , it is easy to note that im-

ges located in some bands are relatively clean, while others are 

xtremely noisy. It verifies that not all bands are contaminated 

y noise. Such a phenomenon is more evident in the typical no- 
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Fig. 1. (a) Images of ROIs from a interval of continuous bands in the original hyperspectral cube; (b) Histograms of ROIs in the selected bands; (c) Restored ROIs obtained 

by our proposed method; (d) Noise map in the selected bands estimated by the proposed method. 

Fig. 2. No-reference image quality metrics on the EO-1 Hyperion dataset: (a) Noise level estimated according to literature [24] ; (b) BRISQUE [25] . Note: the metrics of 

selected bands in Fig. r1 are marked orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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eferences metrics along the global spectral dimension in Fig. 2 , 

here the metric curves present several spikes in a few bands. 

ccordingly, the real HSI noise distribution in the spectral dimen- 

ion is generally non-uniform and has more complicated attributes. 

reating all bands in an equal manner is not fair. Otherwise, bands 

ith higher noise intensities will play a significant role in de- 

oising algorithms, which may negatively impact those with lower 

oise intensities and eventually yields unsatisfying results. Unfor- 

unately, previous state-of-the-art deep learning-based denoising 

ethods scarcely concern all noise characteristics in the spectral 

imension, too. It inclines to make their performance to deterio- 

ate under more practical cases, which will be clearly observed in 

ur experiments. 

To overcome aforementioned challenges, this paper focuses on 

aking full use of HSI noise characteristics and developing a novel 

SI noise removal network based on spectral noise distribution 
2 
ootstrap. Unlike previous denoising methods, we first seek an ap- 

ropriate model to estimate the spectral noise distribution and 

apture its attributes, i.e., diversity, dense local correlation, and 

lobal sparsity. To this end, we improve the quasi recurrent neu- 

al network (QRNN) [26] by designing refined dense and sparse 

ecurrent computations to model these attributes. Then, we inte- 

rate these calculators into a Sparse-QRNN and develop a trans- 

ormation convolution block (Trans-ConvB) to further acquire the 

pectral noise distribution 

ˆ N . As the estimated spectral noise dis- 

ribution enjoys the property of describing the unique noise inten- 

ity of each band, we introduce it within a bootstrap convolution 

lock (Bootstrap-ConvB) to provide guidance for subsequent spatial 

oise separation. Moreover, to acquire a more delicate denoising 

esult, we design a bootstrap mechanism in a repetitive empha- 

is style. To verify the effectiveness of our method, we compare it 

ith several state-of-the-art methods on data with both synthetic 
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nd real HSI datasets. Overall, the proposed denoising framework 

onquers the drawbacks mentioned above of previous methods and 

olves the HSI denoising problem by the bootstrap mechanism of 

he noise distribution in the spectral dimension. Extensive experi- 

ents demonstrate the superiority of our method. 

Our main contributions are summarized as follows: 

• We construct a novel HSI noise removal framework based on 

spectral noise distribution bootstrap. Focusing on intrinsic at- 

tributes of HSI noise distribution along the spectral dimension 

enables the proposed method to be naturally generalized to 

HSIs in practical scenes and ameliorates their quality. 
• We raise a specific branch consisting of Sparse-QRNN and 

Trans-ConvB to fully exploit the intrinsic attributes of HSI noise 

and progressively transform the attributes vector into the spec- 

tral noise distribution 

ˆ N . 
• We develop a bootstrap mechanism that repeatedly incorpo- 

rates the estimated 

ˆ N via multiple Bootstrap-ConvBs to guide 

spatial denoising. The mechanism allows the spectral noise dis- 

tribution to function in the spatial noise separation branch to 

the maximum extent. Such design significantly boosts the pre- 

cise HSI denoising capability beyond existing techniques. 

. Related works 

We have reviewed the mainstream HSI denoising methods and 

oughly classified them into the following two categories. 

.1. Model-driven based HSI denoising methods 

Such methods typically define the denoising task as a maxi- 

um a posterior (MAP)-based optimization problem, whose per- 

ormance relies heavily on the modeled prior. In past decades, 

cholars have developed a series of approaches concentrating on 

odeling the characteristics of HSI as the reasonable assumption 

r priors, involving typical properties such as nonlocal similar- 

ty [15,27,28] , sparsity [29,30] , low rank [23,31] , and tensor struc- 

ure [20,32] . For instance, the tensor dictionary learning (TDL) 

odel [27] utilizes both the nonlocal similarity over spatial domain 

nd the global correlation across the spectral dimension of HSIs 

nd models the HSI as a low-rank tensor in a Laplacian scale mix- 

ure. LRMR [31] adopts an efficient HSI restoration method based 

n low-rank matrix restoration. Later, in Chang et al. [20] , Chang 

t al. additionally consider the non-local self-similarity and present 

 one-way low-rank tensor recovery method. NMoG [33] defines a 

on-independent identically distributed (non-i.i.d.) mixture of the 

aussian to model the complicated HSI noise. More recently, some 

orks [29,30,34] adopt band selection strategy to address the nois- 

est bands, but they ignore other bands with light noise, which re- 

ults in information loss. 

Some advanced model-driven methods have demonstrated high 

enoising performance, but they are still limited by the follow- 

ng two drawbacks: (1) Most model-driven methods involve time- 

onsuming optimization processes and require sacrificing compu- 

ational efficiency to achieve high performance; (2) They usually 

rain a specific model with manually optimized parameters to 

liminate noise of fixed intensity or type, resulting in difficulties 

ackling complex and diverse HSI noise contamination. 

.2. Data-driven based HSI denoising methods 

Deep learning theory provides a data-driven strategy to solve 

omplex denoising problems. Unlike model-driven methods based 

n domain-specific knowledge, deep learning-based methods di- 

ectly learn a nonlinear end-to-end mapping between noisy HSIs 

nd clean HSIs, relying on feature representations learned from 
3 
arge amounts of data. Aiming at natural image denoising, several 

orks have been developed such as DnCNN [35] , CBDNet [36] , etc. 

n particular, the DnCNN proposed by Zhang et al. [35] employed 

esidual learning and batch normalization (BN) for fast conver- 

ence. Inspired by these denoisers, which developed for natural 2D 

mages, a range of HSI denoising methods have been proposed. For 

nstance, HSI-DeNet [16] first introduces deep convolutional neural 

etworks with a series of multichannel 2D filters in HSI denois- 

ng. Similarly, HSI-SDeCNN [37] presents a denoising method us- 

ng a single CNN. Zhang et al. [22] presented a new deep CNN by 

ncorporating the spatial-spectral gradient information. Hereafter, 

iterature [17] proposes the QRNN3D for deep denoising by intro- 

ucing QRNN into the 3D U-net structure. Cai et al. [38] raises a 

oarse-to-fine sparse Transformer to embed sparsity of HSIs into 

eep learning for HSI reconstruction. 

In addition, the noise distribution of HSIs in practical scenes 

s much more complicated, especially in the spectral dimension. 

owever, previous learning-based methods have barely considered 

he non-uniform noised distribution across the spectrum. Most of 

SIs yield noise with non-i.i.d. [33,39] , which decreases the robust- 

ess and generalization performance of these methods. There is 

till great potential for further exploration and promotion in this 

eld. Hence, denoising HSIs needs to focus on two key issues to 

ombat the weaknesses of existing methods: (1) consider the dis- 

ribution characteristics of HSI noise, especially non-i.i.d, (2) deal 

ith complex noise in practical scenarios. 

. The proposed method 

.1. Motivation 

Given the noisy observation Y ∈ R 

B ×W ×E , where W × E indicates 

he spatial scale and B is the total number of bands, the HSI de- 

oising task is usually defined as to derive a noise-free HSI X ∈ 

 

B ×W ×E from the noisy observation Y . A generalized noise degra- 

ation model can be represented as: 

 = X + N , (1) 

here N ∈ R 

B ×W ×E indicates hyperspectral noises. Due to the com- 

lex imaging chain, hyperspectral noises are quite complex and 

ariable, increasing the difficulty of HSI denoising. As previously 

nalyzed, there are two main reasons why current methods cannot 

eal with complex HSI noises. On the one hand, existing methods 

eldom consider the effects of varying noise intensity degrees on 

oise separation, treating these bands equally. This will inevitably 

eteriorate the final denoising performance. On the other hand, 

revious methods also scarcely took into account the properties of 

he noise distribution in the spectral dimension. In particular, they 

arely pay attention to their global sparsity, which also limits the 

enoising performance. In view of these problems, this paper con- 

entrates on investigating attributes of HSI noise distribution in the 

pectral dimension to promote HSI denoising in practical scenarios. 

Before elaborating on our method, we first denote the HSI noise 

istribution in the spectral dimension as ˆ N ∈ R 

1 ×B and provide cor- 

esponding mathematical formulas of the observed attributes as 

elow: 

ˆ 
 = �( ̂  N D , ˆ N S ) , (2) 

here ˆ N D ∈ R 

1 ×B and 

ˆ N S ∈ R 

1 ×B denote the dense dependency and 

he global sparsity of ˆ N , respectively, and �(·) indicates the func- 

ion that how to estimate ˆ N according to ˆ N D and 

ˆ N S . To be specific, 
ˆ 
 D represents the attribute that hyperspectral noises in adjacent 

ands are high-correlated, which can be formulated as: 

ˆ 
 D = �D ( Y i ; θD (Y i −1 , Y i ) | i =1 , 2 , ... ,B ) , (3) 

here i indicates the band index and Y 0 is initialized to be zero. 

peration θ (·) calculates the noise correlation between adjacent 
D 
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Fig. 3. Illustration of the overall architecture proposed denoising framework. It consists of three phases involving spectral noise distribution estimation, spatial noise sepa- 

ration and noise-free HSI recovery. 
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ands, after which the function �D (·) fuses these correlations with 

urrent bands along with the spectra and densely map them to 
ˆ 
 D ∈ R 

1 ×B . ˆ N S represents the attribute that hyperspectral noises are 

parsely distributed in the spectral dimension, which also can be 

ormulated as: 

ˆ 
 S = �S 

(
P j ; θS (P j−1 , P j ) | j=1 , ... , B 

k 

)
, (4) 

here P j denotes the j th bands-group, P 0 is initialized to be zero, 

nd each group involves k neighboring bands. In other words, k 

ndicates the sparsity. Correspondingly, θS (·) calculates the correla- 

ion between adjacent bands-groups. �S (·) incorporates the calcu- 

ated relation and the current bands-group, while iterating along 

he spectral dimension. In addition, �S (·) also plays the role of 

parsely mapping them to ˆ N S ∈ R 

1 ×B . 

In a nutshell, to finely recover the HSI noise-free observation X , 

mages in different bands should be considered individually. Fortu- 

ately, the spectral noise distribution 

ˆ N can be roughly estimated 

y virtue of the last two attributes. The following noise separation 

an be exquisitely guided by assigning appropriate weights to each 

and based on 

ˆ N . Next, we will provide detailed descriptions of the 

pecific design for these phases. 

.2. Network architecture 

As shown in Fig. 3 , the designed overall denoising framework 

omprises of three phases, i.e., spectral noise distribution estima- 

ion, spatial noise separation, and noise-free HSI recovery. In con- 

rete, in the first phase, the noisy input Y starts with encoding via 

he proposed Sparse-QRNN to fully extract the aforementioned in- 

rinsic properties H of HSI noises. It follows by decoding the ex- 

racted properties with a symmetric Sparse-QRNN and ends with 

onverting them into the spectral noise distribution 

ˆ N using the 

esigned transformation convolution block (termed Trans-ConvB). 

fter that, a Unet-based branch under a bootstrap mechanism of 

he estimated 

ˆ N is employed for accurate separating the spatial 

oise map N. Further, in the third phase, we earn a noise-free 

SI X by incorporating the original noisy observation Y and the 

oise map N. Noteworthy, we adopt a unified learning strategy to 

rain the network in an end-to-end manner, associating in all three 

hases. In other words, within the back-propagation of model pa- 

ameters, the recovered result can serve as an auxiliary to the sep- 

rated noise map and the estimated noise distribution, and the 

eparated noise map can support the estimated noise distribution. 
4 
It is worth noting that the spectral noise distribution 

ˆ N plays 

wo significant roles here. First, it makes the network stop factor- 

ng in the noise effects in each band equally. In contrast, it can 

uide the network to adapt varying noise intensities in different 

ands by introducing spectral noise distribution as additive noise 

iases. Second, it can regularize the network to alleviate over- 

tting and improve the generalization ability. 

.3. Spectral noise-distribution estimation 

Motivated by Eqs. (3) and (4) , we design Sparse-QRNN as the 

ore model by capturing the correlations among the bands within 

he spectral dimension for the estimation of spectral noise distri- 

ution 

ˆ N . Uniquely, it simultaneously integrates both dense and 

parse recurrent computations, offering the merits of capturing 

oth dense local correlation and global sparsity. 

As demonstrated in Fig. 4 (a), the proposed Sparse-QRNN con- 

ains a series of computations involving convolution, non-linear ac- 

ivation, and dense and sparse recurrent calculations. To be spe- 

ific, given the input X ∈ R 

1 ×B ×W ×E , we first utilize a combination 

f multiple convolution kernels to extract spatial and spectral fea- 

ures X ′ ∈ R 

m ×B ×W ×E , paving the way for the subsequent corre- 

ation measurement in the spectral dimension. Notably, we stack 

ne pseudo-3D convolution and one dilated pseudo-3D convolu- 

ion (dilated by 2) in a group for feature extraction, using one 

roup with the kernel size of 1 × 3 × 3 for the spatial domain and

nother with the 3 × 1 × 1 kernel for spectral dimension. Such a 

esign can provide local features and relatively sparse features in 

oth spatial and spectral domains. Next, we split the feature map 

 

′ in two and activate them non-linearly with tanh (·) and σ (·) , 
espectively, acquiring the representative tensor T ∈ R 

n ×B ×W ×E and 

he selective gate G ∈ R 

n ×B ×W ×E . The selective gate G is character- 

zed by σ (·) as a probability from 0 to 1 to execute the feature

mportance measurement for subsequent feature filtering and de- 

ivery. 

Hereafter, instead of the original calculation of the quasi- 

ecurrent f-pooling, we take bi-directional dense and sparse re- 

urrent computations (see Fig. 4 (b)) to capturing properties of 

he spectral noise distribution. Specifically, we first design a bi- 

irectional dense recurrent calculation in a band-by-band style, 

hich can effectively exploit the local dependency of features be- 
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Fig. 4. Illustrations of the proposed Sparse-QRNN, which exploring properties of the spectral noise-distribution via dense and sparse recurrent calculations along the spectral 

dimension. 
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ween adjacent bands, and �D (·) in Eq. (3) is defined as: 

→ 

h 

D 
i 

= g i �
−→ 

h 

D 
i −1 

+ (1 − g i ) � t i , 
← 

h 

D 
i 

= g i �
← −

h 

D 
i +1 

+ (1 − g i ) � t i , 
(5) 

here i (i ∈ { 1 , 2 , . . . , B } ) represents the index of each band with

ense intervals. t i and g i are derived from tensor T and G , respec-

ively, and operator � represents element-wise multiplication. Vec- 

ors 
→ 

h D 
i 

and 

← 

h D 
i 

are feature correlations between adjacent bands, 

xpecting to capture the forward and backward dense dependency. 

t continuously calculates feature correlations between adjacent 

ands and transfers them recurrently along the spectral dimen- 

ion. For simplicity, 
→ 

h D 
0 

and 

← 

h D 
0 

are initialized to zero. It is worth 

oting that g i here filters the hidden state 
−→ 

h D 
i −1 

transmitted from 

he previous band as well as the representative tensor t i of the 

urrent band, which serves to aggregate features from the former 

nd latter bands and enhance their correlation. Further, we pro- 

ose a sparse transmission style across bands-groups, which is cor- 

esponding to �S (·) in Eq. (4) , aiming to capturing the global spar- 

ity of spectral noise distribution: 

 

S 
j = g j � h 

S 
j−1 + (1 − g j ) � t j , (6) 

here t j and g j are derived by bounding the representative tensors 

nd selective gates of the adjacent k bands into bands-groups. k ∈ 

 1 , 2 . . . , B } denotes both the number of bands in each bands-group

nd the computational sparsity. Correspondingly, j ∈ { 1 , . . . , B/k } 
epresents the index of bands-groups with sparse intervals. It cap- 

ures global sparsity by recurrently computing feature correlations 

etween bands-groups. If k = 1 , it means that the sparse recurrent 

omputation degenerates to a dense one. In particular, consider- 

ng that the real world HSI data have a varying number of bands, 

e set z = B for real HSI denoising, enabling the model trained on 

ataset with simulated noise to be transferred to other real-world 

SI data. This setting also facilitates in capturing the global spar- 

ity of the noise distribution. Subsequently, we note the results 

f the recurrent calculations as 
→ 

H 

D , 

← 

H 

D , and H 

S , and yield the fi-

al hidden state H 

′ ∈ R 

C×B ×W ×E ( C indicates the channel number 

f features) by the following calculation: 

 

′ = 

→ 

H 

D + 

← 

H 

D + H 

S . (7) 
5 
On the basis of H 

′ extracted by Sparse-QRNN, we leverage an- 

ther Sparse-QRNN in symmetric to further decoding features of 

pectral noise distribution and acquire H ∈ R 

C×B ×W ×E . Immediately 

fterward, we design a transformation convolution block (termed 

rans-ConvB, illustrated in Fig. 5 ), involving a series of operations 

uch as adaptive averaging pooling, convolution, ReLU and sigmoid 

ctivation. Trans-ConvB progressively maps features to the spectral 

oise distribution 

ˆ N ∈ R 

B ×1 via multi-level calculations and con- 

traints the value ranging (0,1) via sigmoid activation. Followed 

hese, the final ˆ N is calculated by: 

 = Sparse-QRNN 

(
H 

′ ), 
ˆ 
 = Trans-ConvB ( H ) . 

(8) 

verall, these designs enable the estimation of spectral noise dis- 

ribution to effectively characterize its crucial attributes, especially 

he dense local correlations in adjacent bands and global sparsity 

n the spectral dimension. 
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1 It is available at http://icvl.cs.bgu.ac.il/hyperspectral/ . 
.4. Spatial noise separation 

Upon acquiring the spectral noise distribution 

ˆ N in well- 

stimated, subsequent phases like spatial noise separation and 

oise-free HSI recovery can be fulfilled accurately. Nevertheless, 

onventional denoising networks ignore the diversity of noise in- 

ensities in the spectral dimension. They simply take these bands 

nto an average consideration, which directly conflicts with the 

forementioned attributes (i.e., sparsity) and always leads to poor 

enoising performance. To this end, we take the estimated spectral 

oise distribution 

ˆ N as knowledge prior to guide spatial noise sep- 

ration. It is remarkable that, to yield a precise noise map, we de- 

ign a novel bootstrap mechanism that repeatedly emphasize the 

pectral noise distribution 

ˆ N as guidance throughout the spatial 

oise separation process. The concrete design details are described 

elow. 

First, denoising is generally regarded as a low-level task in com- 

uter vision. Hence, we employ a relatively shallower network as 

he backbone of spatial noise separation (as illustrated in Fig. 3 ). 

n more detail, we employ 3D convolution with 3 × 3 × 3 kernel 

s the head and tail layers of the U-net backbone for jointly ex- 

loring or restoring spatial and spectral features. The main body 

f this backbone contains two down-sampling layers in the encod- 

ng process and other two corresponding layers up-sampling in the 

ecoding process. Besides, we also add some shortcut connections 

etween layers in different levels, ensuring that effective features 

rom distant layers are linked. The arrangements mentioned above 

acilitate the extraction of noise-related features in the spatial do- 

ain and the reconstruction of HSI noise maps. 

Second, during the encoding process, we develop a bootstrap 

echanism based on the guidance under estimated spectral noise 

istribution 

ˆ N . It enables our model to treat bands that degrade in 

arious degrees with different weights tailor-made according to ˆ N . 

oteworthy, the designed guidance flow can be seen by the lines 

ith arrows colored orange in Fig. 3 . The estimated spectral noise 

istribution 

ˆ N is friendly to the varying scales of feature maps f in 

ifferent layers. Rather than guiding only once, the proposed boot- 

trap mechanism integrates ˆ N repeatedly across layers of different 

esolutions, ensuring that each band is assigned customized weight 

ccording to ˆ N during the feature encoding and transmission pro- 

ess. The merit of such mechanism lies in that feature map from 

ach layer can be characterized and updated on the basis of the es- 

imated spectral noise distribution 

ˆ N , benefiting in accurate noise 

eparation. 

Third, we form the backbone of this branch with four functional 

locks, including the pseudo-3D convolution block (P-ConvB), the 

ootstrap convolution block (Bootstrap-ConvB), the upsampling 

onvolution block (UpConvB), and the deconvolution block (De- 

onvB). Taking P-ConvB as an example, it consists of a spatial 

onvolution layer with the kernel size of 1 × k × k , followed by a

pectral convolution layer with the kernel size of k × 1 × 1 and a 

eakyReLU activation, where k is generally set to 3. The detailed 

onfigurations of these blocks are shown in the dashed box in 

ig. 3 . Remarkably, unlike the other three, Bootstrap-ConvB incor- 

orates residual learning with multiple convolutions to maximize 

he efficiency of ˆ N guidance and feature extraction (see Fig. 6 ). We 

evise a specialized calculation that can be formulated as follows: 

f ′ = Bootstrap-ConvB ( f ∗ Conv ( ̂  N ; s )) + f, (9) 

here Bootstrap-ConvB (·) indicates the combination of P-ConvBs 

n multiple size kernels, 3D convolution layers in multiple size ker- 

els, and LeakyReLU activation. It serves to perform affine trans- 

ormation upon the band-wise level and regularization upon the 

hannel-wise level according to the spectral noise distribution 

ˆ N . 

onv ( ̂  N ; s ) acts as an additive noise bias tuner to simulate the 
6 
arying degrees of bias in different bands. It can model the non- 

inear biases well, which is profitable to capture the actual noise 

istribution of the spectral dimension for noise separation. Under 

he guidance of spectral noise distribution throughout the back- 

one network, this phase can effectively achieve accurate HSI noise 

ap separation. 

. Experiments and evaluation 

.1. Experimental settings 

.1.1. Data with synthetic noise 

The publicly available ICVL 1 hyperspectral dataset [40] is col- 

ected by a Specim PS Kappa DX4 hyperspectral camera and a ro- 

ary stage for spatial scanning. Each HSI cube in ICVL has a spa- 

ial resolution of 1392 × 1300 and a spectral dimension of 31. The 

ands are formed in wavelength increments of 10 nm and cover a 

isible range from 400 nm to 700 nm . Since the ICVL dataset pro- 

ides a sufficient number of practically noise-free HSIs and widely 

sed as benchmark dataset in Wei et al. [17] , Pan et al. [41] , we

onduct experiments with ablation studies on this dataset. How- 

ver, HSIs collected from real scenes are always contaminated by 

omplex noises. To mimic noise-contaminated HSIs in the real 

cenes to the greatest extent, we add a series of complex synthetic 

oises to the clean ICVL HSIs. Concretely, it involves five cases of 

omplex noise: (1) Non-i.i.d. Gaussian noise; (2) Non-i.i.d. Gaus- 

ian + Stripe noise; (3) Non-i.i.d. Gaussian + Dead-line noise; (4) 

on-i.i.d. Gaussian + Impulse noise; (5) Mixture noise. Specifically, 

mong these cases, two-thirds of bands are polluted with non-i.i.d 

aussian noise, which is zero-mean and has a random intensity 

anging from 30 to 70. Stripe, dead-line noises are randomly added 

o one-third of bands with 5% to 15% of columns, while impulse 

oise is randomly added to one-third of bands with an intensity 

anging from 10% to 70%. Mixture noise means that the HSI is not 

nly corrupted by Gaussian noise but also by some sparse noise 

entioned before. We also conduct synthetic mixture noises ex- 

http://icvl.cs.bgu.ac.il/hyperspectral/
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eriments on the publicly available HYDICE image of Washington 

.C. Mall, 2 which has a resolution of 1280 × 307 × 191 . 

.1.2. Implementation details 

Our model is implemented on the PyTorch 

3 platform and accel- 

rated on NVIDIA TITAN RTX GPU. To train our ˆ N -Net model, we 

elect 100 out of 200 HSIs from the ICVL dataset as the training 

et, along with 5 for validation, and the rest of these HSIs con- 

titute the testing set. Moreover, we set the patch with a spatial 

ize of 64 × 64 and preserve the complete spectral dimension. We 

et the mean absolute error loss (MAEloss) as the loss function. 

ence, the network is trained by minimizing the MAEloss between 

he noisy HSI and the clean ground truth pairs. Besides, to improve 

he robustness of training, we rescale the patches with a rate in 

 1 , 0 . 5 , 0 . 25 } and randomly rotate them to diversify the training

et further, yielding a total of 40k training samples. Parameters are 

nitialized with Kaiming Initialization and updated by Adam Opti- 

izer. To obtain a denoising model which robust to various types 

f hyperspectral noise, we follow the easy-to-difficult training pol- 

cy and set up a two-phase training with a total of 60 epochs with

 fixed batch size (i.e., 16). In addition, the initial learning rate is 

et to 0.001 and decreases exponentially with epochs, where the 

alidation results show stable performance. 

.1.3. Evaluation metrics 

We employ four mainstream quantitative metrics on the de- 

oised results to measure the denoising performance, inclusive of 

ean peak signal-to-noise ratio (MPSNR), mean structure similar- 

ty (MSSIM), mean feature similarity (MFSIM), as well as mean 

pectral angle mapper (MSAM), mean relative dimensionless global 

rror synthesis (MERGAS) is used to calculate the accuracy of Pan 

harpened image considering normalized average error of each 

and of the result image. The MPSNR, MSSIM, and MFSIM are used 

or spatial-based image quality evaluation, and a larger value rep- 

esents better denoising performance. In contrast, MSAM and MER- 

AS are spectral-similarity-based metrics, and a smaller MSAM and 

ERGAS value implies better spectral fidelity for spectral dimen- 

ion. Additionally, we also record the average running time of each 

omparative method under all noisy cases. Noteworthy, for deep 

earning-based methods, the running time refers to the average 

ime consumed per HSI during the testing phase. 

.1.4. Comparative methods 

We compare our method with state-of-the-art HSI denois- 

ng solutions, including five traditional model-driven based meth- 

ds, i.e., LRMR [31] , LRTV [23] , LRTDTV [32] , NMoG [33] , and

astHyMix [42] , and four advanced data-driven based method i.e., 

RNN3D [17] , SQAD [41] , MAC-Net [43] , and GRUNet [44] . For

hese comparative methods, we have made great effort s to repro- 

uce the best denoising results with the publically available codes 

nd optimal parameters settings. 

.2. Denoising on HSIs with synthetic noise 

.2.1. Estimated spectral noise distribution 

As represented in Fig. 7 , we show noisy HSIs in the selected 

ynthetic noise cases and their corresponding spectral noise distri- 

ution 

ˆ N , which is estimated by our ˆ N -Net. It is observed that val- 

es of ˆ N close to 0 refer to bands heavily contaminated by noise, 

nd vice versa, values close to 1 denote relatively cleaner bands. 

ntuitively, the curve of the estimated 

ˆ N follows a high consistency 

ith the noisy bands along the spectral dimension (as marked by 
2 It is available at https://engineering.purdue.edu/ ∼biehl/MultiSpec/hyperspectral. 

tml . 
3 http://pytorch.org/ 
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p
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7 
he red dashed arrows). In addition, the estimated 

ˆ N describes the 

nique properties in the spectral dimension with certainty, provid- 

ng a reliable prior for dealing with different degradations of noise 

orruption and can be extremely helpful for subsequent denoising. 

rom another aspect, our ˆ N -Net acquires diverse ˆ N curves for dif- 

erent noisy cases, which reveals that our proposed model has a 

trong generalization capability. 

.2.2. Spatial quality comparisons 

The visual results of some representative scenes are shown in 

ig. 8 . We zoom in on two regions of interest in the reconstructed 

mages for a more straightforward and precise observation. Ob- 

iously, traditional model-driven methods LRMR and LRTV fail to 

hese complex noises. LRTDTV and NMoG have successfully re- 

oved most of the noise at the cost of missing textural details. 

rom the detail aspect, some fine details are blurred in most re- 

ults, and they are of relatively low quality in comparison with 

urs. It is evident, especially in case (4), that only NMoG and 

ur ˆ N -Net finely recover the critical lines in such a scene, and 

ur method shows a cleaner result with more contextual details. 

rossly, our results achieve more spatial fidelity under all these 

oisy cases and are much clearer with fewer artifacts and sharp 

dges. It also implies that our method has a more robust capabil- 

ty of removing various complex noises. 

.2.3. Spectral fidelity comparisons 

As shown in Fig. 9 , we select two pixels in each noisy case and

raw the spectral curves recovered by all comparative methods to 

erify the superiority of our method in spectral fidelity. Evidently, 

he spectra recovered by some traditional methods (i.e., LRMR, 

RTV, LRTDTV, NMoG, FastHyMix) still show abnormal spikes and 

uctuations, especially LRTV in case (3) and (5), as well as NMoG 

n case (4). Such results represent their unstable performance, sug- 

esting that they fail to maintain the spectral fidelity and cannot 

enoise HSIs completely. Compared to the other results, the recov- 

red spectra curves of our method are much closer to the refer- 

nce spectra. It indicates that our method 

ˆ N -Net accurately elimi- 

ates the negative effect of noise in the spectral domain and fur- 

her confirms the advantage of our method in maintaining high 

pectral fidelity. 

.2.4. Quantitative comparisons 

The averaged denoising results overall test HSss for quantitative 

valuation are listed in Table 1 . The best results are highlighted 

n red for each metric among all comparative results. Firstly, an 

asy observation is that the proposed 

ˆ N -Net dramatically outper- 

orms other advanced denoising methods under all complex noise 

ases. Compared to before denoising, the proposed 

ˆ N -Net brings 

n average gain of the MPSNR indicator exceeding 21 dB under all 

oisy cases. This indicator gains even up to 25.797 dB in the case 

f mixed noise. As for other 2D image quality evaluation metrics 

MSSIM and MFSIM), our proposed method also obtains outcomes 

ith absolute advantages, which also corroborates with the pre- 

ious visualization results ( Fig. 8 ). For a more comprehensive and 

bjective evaluation of the denoising performance of each model, 

e have collected the spatial quality evaluation indexes (MPSNR 

nd MSSIM) of each band, yielding Fig. 10 . Remarkably, our method 

urpasses other methods in the majority of bands under all cases, 

emonstrating our method’s effectiveness and robustness. On the 

ther hand, the numerical results of the MSAM metric and the 

EGRAS confirm the superiority of the proposed 

ˆ N -Net on spec- 

ral fidelity again. To sum up, the quantitative comparison results 

ndicate that the proposed method has superior flexibility in com- 

lex noise cases. In the spectral dimension, the stable performance 

f the spatial quality evaluation indexes (MPSNR, MSSIM) in each 

and also indicates that our method can make full use of the HSI 

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://pytorch.org/
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Fig. 7. Noisy HSIs in the synthetic noise cases and their corresponding spectral noise distribution ˆ N , which estimated by ˆ N -Net. The red dashed arrows partially mark their 

correspondence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Denoising results on ICVL dataset with synthetic complex noise. Examples for all the competing methods on band 5,12 and 20 of the ICVL dataset under 5 complex 

noise cases are presented respectively. 

8 
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Fig. 9. The spectra of two selected pixels recovered by some advanced comparative methods under all noisy cases from the ICVL dataset are presented, respectively. From 

the left to right, they are (1) Non-i.i.d. Gaussian noise case; (2) Mixture noise case. 

Table 1 

Quantitative results of all competing methods under all complex synthetic noise cases on the ICVL dataset. The best results are shown in red, the second best ones are 

shown in blue, and the third ones are shown in green. 

Noisy LRMR [31] LRTV [23] LRTDTV [32] NMoG [33] FasyHyMix [42] QRNN3D [17] SQAD [41] MAC-Net [43] GRUNet [44] our ˆ N -Net 

Case (1): Non-i.i.d. Gaussian noise 

MPSNR 23.113 29.142 35.621 39.623 41.063 44.082 44.008 43.354 45.351 44.682 45.56 

MSSIM 0.3558 0.5393 0.9171 0.9522 0.9601 0.9788 0.9809 0.982 0.986 0.9844 0.9861 

MFSIM 0.6718 0.9106 0.9384 0.9797 0.9907 0.9923 0.9928 0.9948 0.9959 0.9951 0.9963 

MSAM 0.7637 0.3287 0.0677 0.0616 0.0927 0.066 0.0388 0.0473 0.0387 0.0362 0.0378 

MERGAS 48.828 11.073 5.187 3.706 3.755 2.176 1.709 1.967 1.537 1.608 1.483 

Case (2): Non-i.i.d. Gaussian + Stripe noise 

MPSNR 23.082 29.083 35.609 39.294 40.275 41.293 43.93 43.309 45.217 44.568 45.46 

MSSIM 0.3553 0.5404 0.9176 0.9513 0.9474 0.9357 0.9809 0.982 0.9848 0.9844 0.9859 

MFSIM 0.6672 0.9088 0.9391 0.9792 0.9843 0.9788 0.9927 0.9948 0.9959 0.995 0.9963 

MSAM 0.7633 0.3311 0.0681 0.0622 0.1344 0.103 0.0396 0.0486 0.0402 0.0373 0.0388 

MERGAS 49.393 11.168 5.201 3.776 5.589 3.582 1.716 1.961 1.591 1.635 1.5 

Case (3): Non-i.i.d. Gaussian + Deadline noise 

MPSNR 23.007 28.565 34.115 36.765 38.028 38.525 39.323 42.299 41.815 43.312 43.945 

MSSIM 0.3541 0.539 0.9062 0.9333 0.9452 0.8608 0.9547 0.9808 0.9834 0.9841 0.985 

MFSIM 0.6651 0.9046 0.937 0.9717 0.9825 0.9476 0.9797 0.9944 0.9964 0.9947 0.996 

MSAM 0.7776 0.3383 0.1096 0.0881 0.1603 0.1255 0.0545 0.0553 0.0692 0.0376 0.0471 

MERGAS 50.057 11.794 7.979 5.257 6.923 6.938 2.852 2.399 3.525 1.742 1.982 

Case (4): Non-i.i.d. Gaussian + Impulse noise 

MPSNR 21.211 24.816 34.155 38.464 33.797 36.578 41.879 40.372 37.23 42.118 42.306 

MSSIM 0.3425 0.4066 0.8913 0.9479 0.8228 0.8835 0.9581 0.9545 0.8856 0.962 0.9669 

MFSIM 0.6205 0.8332 0.9336 0.9775 0.9335 0.9739 0.993 0.9917 0.9702 0.991 0.9913 

MSAM 0.8157 0.4703 0.2118 0.0749 0.4339 0.4043 0.1171 0.1243 0.3761 0.055 0.0761 

MERGAS 51.915 20.85 7.41 4.26 17.638 15.632 3.5 3.819 14.98 2.775 2.449 

Case (5): Mixture Noise 

MPSNR 15.474 23.906 32.759 36.08 30.296 29.597 40.526 38.959 30.665 39.48 40.807 

MSSIM 0.1852 0.3928 0.8832 0.9264 0.7795 0.745 0.9559 0.9476 0.8658 0.9538 0.9604 

MFSIM 0.5325 0.826 0.9284 0.9699 0.9201 0.9222 0.9898 0.9862 0.9592 0.9851 0.9877 

MSAM 0.8497 0.4775 0.1983 0.0936 0.4364 0.4216 0.1178 0.1215 0.3759 0.066 0.076 

MERGAS 57.512 20.944 8.621 5.585 14.902 16.323 3.494 3.769 14.251 2.892 2.677 

Time(s) - 12.42 201.4 411.73 207.92 2.35 0.84 0.78 3.21 0.59 0.56 

9 
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Fig. 10. PSNR and SSIM metrics across the spectrum of some advanced comparative methods under all cases. From the left to right, they are (1) Non-i.i.d. Gaussian noise; 

(2) Non-i.i.d. Gaussian + Stripe noise; (3) Non-i.i.d. Gaussian + Dead-line noise; (4) Non-i.i.d. Gaussian + Impulse noise; (5) Mixture noise. 

Fig. 11. Comparison in denoising results under complex synthetic mixture noise case on the Washington D.C. Mall dataset. (a) Denoising results of ROIs on band 115; (b) 

The spectra of the selected pixel recovered by comparative methods. 
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ntrinsic attributes to guide the HSI denoising and recovery, which 

urther ensures the merit of our ˆ N -Net model. 

.3. Denoising on remote sensing HSIs with synthetic noise 

The experimental results shown in Fig. 11 and Table 2 demon- 

trate the effectiveness and robust denoising performance of the 

roposed 

ˆ N -Net in handling complex noise degradation in remote 

ensing scenes. 

Fig. 11 shows denoising results of ROIs on band 115 in the 

ashington D.C. Mall dataset. It can be seen that the proposed 

ˆ N - 

et restores the cleanest denoised image and the most accurate 

pectral recovery compared to the other methods. Table 2 further 

uantitatively evaluates the performance of the proposed method 
10 
nd the other competing methods. FastHyMix achieves the best in 

PSNR, MERGAS and Times, while NMoG gets the best on MSSIM 

nd MFSIM. The proposed 

ˆ N -Net achieves the top three values 

f all metrics, indicating its robust denoising performance in re- 

ote sensing scenes. On the other hand, the performance of the 

ther methods, neither traditional methods LRMR, LRTV, LRTDTV, 

or deep learning-based methods QRNN3D, SQAD, MAC-Net, and 

RUNet, is relatively poor, with lower MPSNR, MSSIM, and MF- 

IM values. One possible reason is that with regard to all deep- 

earning-based methods, we directly adopted the trained model 

all of these methods are trained on ICVL dataset) to test on this 

ew dataset. 

Overall, the experimental results demonstrate that the proposed 

ethod outperforms the other competing methods in handling 
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Table 2 

Quantitative results of all competing methods under complex synthetic mixture noise case on Washington D.C. Mall dataset. The best results are shown in red, the second 

best ones are shown in blue, and the third ones are shown in green. 

Noisy LRMR [31] LRTV [23] LRTDTV [32] NMoG [33] FasyHyMix [42] QRNN3D [17] SQAD [41] MAC-Net [43] GRUNet [44] our ˆ N -Net 

MPSNR 18.71 31.202 26.642 29.288 34.516 34.793 28.288 22.772 34.111 26.105 34.52 

MSSIM 0.6138 0.9562 0.8713 0.942 0.9818 0.9783 0.9499 0.8437 0.9744 0.8949 0.9767 

MFSIM 0.781 0.9664 0.8865 0.9525 0.9855 0.9825 0.9511 0.8871 0.9791 0.9257 0.9811 

MSAM 0.488 0.1019 0.1145 0.0823 0.0742 0.0720 0.1132 0.1726 0.0761 0.1567 0.0702 

MERGAS 27.772 4.831 8.61 5.801 4.025 3.313 6.594 12.345 3.603 8.565 3.43 

Time (s) - 38.71 152.15 459.78 143.63 0.44 5.45 6.01 14.13 7.02 4.42 

Fig. 12. Comparison in denoising results on EO-1 Hyperion HSI dataset with selected bands and comparison in recovered spectra of two sampled pixels. 
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omplex noise degradations in remote sensing scenes. The gener- 

lization capability of the proposed 

ˆ N -Net to real-world HSIs and 

ts lightweight scale are additional benefits. These results provide 

aluable insights for advancing the development of effective and 

obust HSI denoising methods. 

.4. Denoising on real HSI 

.4.1. Real HSI data 

We also demonstrate the ability of our proposed method 

o generalize to real hyperspectral noise without corresponding 

round truth. We directly evaluate the trained model in remote 

ensing hyperspectral datasets collected in natural scenes to ver- 

fy its denoising performance and robustness. Three experiments 

re carried out on the EO-1 Hyperion 

4 dataset with 166 bands, the 

aofen-5 (GF-5) Shanghai dataset 4 and the GF-5 Baoqing dataset 4 

ith 155 bands acquired by the Advanced Hyperspectral Imager 

n GF-5 satellite [45] . Although these data are negatively affected 

y the atmosphere and water, which heavily contaminated some 

ands, we still conduct denoising without removing any bands. 

We directly utilize the model trained on synthetic noise data 

rom the ICVL dataset to test the real remote sensing datasets to 

erify its denoising performance and generalization ability. Fig. 12 

epresents results on EO-1 Hyperion dataset, and Fig. 13 illus- 

rate denoising result on GF-5 Baoqing dataset and GF-5 Shang- 

ai dataset. Due to environmental factors such as atmosphere, wa- 

er, or hardware factors like photon shot within the sensor, these 

ata sets are heavily contaminated with complex noise. We can 

asily observe complex noise in some bands involving Gaussian, 

tripe, deadline, and mixture noise, resulting in a big challenge 
4 It is available at http://hipag.whu.edu.cn/resourcesdownload.html . 

i

q

11 
o recover clean HSIs. Aiming at a fine comparison of the gen- 

ralization capabilities of the comparative algorithms, we select 

wo bands suffering from different levels of noise contamination 

s examples and illustrates the recovered details by zooming in 

n three small regions. Besides, we also choose two pixels in each 

eal remote sensing dataset and draw the spectral curves recovered 

y some leading methods to confirm the spectral fidelity of our 

ethod. 

In these datasets, the original HSIs are damaged by complex 

ixtures of the Gaussian noise, the stripe noise, and the deadline 

oise. It is apparent that our method achieves better results in vi- 

ualization due to its strong capability of self-guiding, especially in 

erms of better recovery of texture and edge details as well as a 

ore delicate removal of structural noise. Moreover, our method 

till performs stably in dealing with different contamination levels 

n various wavebands. Such results further confirm the robustness 

f our proposed method in a real-world scenario. On the other 

and, corrupted by noise, the original spectral curves show some 

ocalized dense fluctuations caused by small perturbations and a 

ew spikes caused by significant variations. Generally speaking, it is 

retty clear that the spectral curves are smoother after denoising 

nd recovery by our proposed method. Besides, the overall shape 

f the spectral curve recovered by our method is more consistent 

ith the original data, which verifies the effectiveness and flexibil- 

ty of our model. 

On the other hand, as Fig. 14 shown, the estimated noise dis- 

ribution curve of these two datasets are are relatively consistent 

ith the actual noise degradation degree, indicating the general- 

zation capability of the trained model to real-world HSIs. Espe- 

ially the Fig. 14 (a), albeit different, the spectral noise distribution 

t depicted has a certain similarity to typical no-reference image 

uality metrics in Fig. 2 . It also implies the potential positive guid- 

http://hipag.whu.edu.cn/resourcesdownload.html
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Fig. 13. Comparison in denoising results on GF-5 HSI datasets with selected bands and comparison in recovered spectra of two sampled pixels. 

a

i

4

s

n

b

p

o

a

m

t

d

t

t

f

m

s

t

a

i

n

t

f

c

a

b

o

7

u

i

c

o

t

a

i

nce of the estimated spectral noise distribution for robust denois- 

ng performance. 

.5. Ablation study and analysis 

Take non-i.i.d. Gaussian noise case and non-i.i.d. Gaus- 

ian + stripe noise case as examples, Fig. 15 shows some typical de- 

oising results and corresponding noise maps separated from noisy 

ands, and Fig. 16 presents the denoised spectra of two sample 

ixels. Obviously, each band is contaminated with different degrees 

f noise, and the proposed model effectively removes all the noise 

nd finely reconstructs the clean image. For one thing, the noise 

ap shown in Fig. 15 suggests that our model successfully removes 

he synthetic non-i.i.d. Gaussian noise and stripe noise in different 

egrees. For another, the denoised spectra shown in Fig. 16 imply 

he high spectral fidelity of our model. These results demonstrate 

he effectiveness of the proposed 

ˆ N -Net model in coping with dif- 

erent types of complex hyperspectral noise. 

To investigate the contribution of each specific design in our 

ethod downright, we execute comprehensive ablation studies on 
12 
ynthetic non-i.i.d. Gaussian noise removal on the ICVL dataset. We 

ake MPSNR, MSSIM, MSAM to evaluate the model performance, 

nd take Total Params and FLOPs to evaluate the model complex- 

ty. Table 3 lists the quantitative results of various ablation compo- 

ents, focusing on the specific designs in the spatial noise separa- 

ion and spectral noise distribution estimation, by which we per- 

orm a detailed analysis in terms of denoising performance and 

omputational cost. 

In concrete, firstly, through experiments on spatial noise sep- 

ration, we verify that the introduction of Bootstrap-ConvB could 

ring over a 1.5 dB gain in the MPSNR metric and a few gains 

n the MSSIM and MSAM metrics with an increase of only about 

2 K in model parameters. It also suggests the advantages of resid- 

al learning in Bootstrap-ConvB. However, the unpleasant denois- 

ng performance also implies that fine noise removal and HSI re- 

overy cannot be achieved by barely using spatial information. Sec- 

nd, since we developed the spectral dimensional noise distribu- 

ion branch based on QRNN to guide the subsequent denoising, 

 series of ablation experiments are conducted to investigate the 

mprovements of each design. The experimental results demon- 
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Fig. 14. Illustrations of spectral noise distribution estimated by the proposed ˆ N -Net on different real-word HSIs. Images from some selected bands (marked in red) are also 

presented. (a) EO-1 Hyperion dataset; (b) GF-5 Shanghai dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 15. Denoising performance of the proposed ˆ N -Net model in the spatial dimension under two complex noise cases from the ICVL dataset are presented, respectively, 

including the noisy images, denoised images and noise maps in different bands. (a) Non-i.i.d. Gaussian noise case; (b) Non-i.i.d. Gaussian + Stripe noise case. 

Table 3 

Ablations on remove synthetic non-i.i.d. Gaussian noise on ICVL dataset. We evaluate the results by MPSNR, MSSIM, MSAM as well as the number of parameters (Params) 

of these networks. Our benchmark network is indicated by boldface . 

No. Components Metrics 

Spectral noise distribution estimation Guiding 

style 

Spatial noise separation 

MPSNR MSSIM MSAM Params FLOPs 
QRNN Bi-dense recurrent Sparse recurrent P-ConvB Bootstrap-ConvB 

1 � 37.389 0.960 0.134 171.12K 10.48G 

2 � � 38.855 0.962 0.111 243.15K 14.47G 

3 � once ( ×1 ) � � 40.688 0.983 0.071 263.99K 16.90G 

4 � � once ( ×1 ) � � 40.827 0.985 0.068 263.99K 16.90G 

5 � � � once ( ×1 ) � � 41.229 0.984 0.066 263.99K 16.90G 

6 � � � repeatedly ( ×3 ) � � 43.676 0.992 0.053 263.99K 16.90G 

13
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Fig. 16. Denoising performance of the proposed ˆ N -Net model in the spectral dimension under (a) Non-i.i.d. Gaussian noise case; (b) Non-i.i.d. Gaussian + Stripe noise case. 
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trate that QRNN increases the model parameters from 243.15 K 

o 263.99 K, while it brings nearly 1.8 dB gain in the PSNR metric 

nd over 0.02 improvement on MSSIM and decreases the MSAM 

alue from 0.111 to 0.071. Besides, we also model the dense local 

ependence and global sparsity of the spectral dimensional noise 

nd design the bi-directional dense and sparse recurrent calcula- 

ions. The positive performance on these metrics indicates that it 

s necessary to consider the intrinsic properties of HSI noise distri- 

ution. Notably, these incremental designs that we perform based 

n QRNN have improved denoising performance without imposing 

ny computational burden according to the metric of params. 

Lastly, we assess the effectiveness of the self-guided style. For 

nstance, the addition of spectral noise distribution estimation im- 

roves the MPSNR, MSSIM, and MSAM values to 40.688, 0.983, 

nd 0.071, respectively. The repeatedly guiding style achieves supe- 

ior denoising performance over all metrics. It brings over 2.4 dB 

ain in the MPSNR metric compared to guiding once, approach- 

ng 0.992 on MSSIM and decreasing MSAM to 0.053. Moreover, the 

uidance of ˆ N is introduced by leveraging the subbranch of the 

ootstrap-ConvB (colored orange in the dashed box of Fig. 3 ). The 

epeated guidance is implemented by appending that subbranch to 

ach Bootstrap-ConvB, which explains why it does not raise an ex- 

ra computational burden on the model parameters. Such design 

acilitates a more robust ability to cope with varying degrees of 

oise. 

Despite the addition of various optimization modules, the pro- 

osed 

ˆ N -Net has a lightweight scale and the fastest running time 

ompared to other methods. For instance, the proposed method 

as only 263.99 K total parameters and 16.90 G FLOPs, which is 

onsiderably less than other methods that have similar or poorer 

erformance. Therefore, it can be concluded that the proposed 

ˆ N - 

et is effective and robust in handling complex synthetic mixture 

oise degradations in HSI denoising, while also being computation- 

lly efficient and having a lightweight scale 

. Conclusion and discussion 

This paper proposes a novel HSI noise removal framework ˆ N - 

et based on spectral noise distribution bootstrap. It comprises 

hree phases: spectral noise distribution estimation, spatial noise 

eparation, and clean HSI recovery. Concretely, we design bidi- 

ectional dense and sparse recurrent calculations and propose a 

parse-QRNN-based block to capture the dense dependency and 
14 
lobal sparsity of HSI noise in the spectral dimension. Addition- 

lly, we progressively map the attributes vector into spectral noise 

istribution via multi-level convolutions in Trans-ConvB. In partic- 

lar, we also raise a bootstrap mechanism and incorporate the esti- 

ate ˆ N into spatial noise separation through Bootstrap-ConvBs, ad- 

ressing various spatial noise degradations in different bands and 

nely restoring a noise-free HSI. Abundant experiments on data 

ith synthetic and natural noise have demonstrated the superi- 

rity of our method. The finding of this study suggests a poten- 

ial and pleasing prospect of spectral distribution. Such an idea 

everaging estimated feature distribution along the spectral dimen- 

ion can also be easily extended to spatial or temporal dimensions, 

hich is capable of supporting or bootstrapping subsequent tasks 

n inspiring future insightful research. 

The limitation of our method and other existing HSI denois- 

ng methods is the unsatisfied fidelity of the recovered spectra in 

eal HSI under extremely severe and complex noise corruption, as 

hown in Fig. 12 shows. The discrepancy between the real-world 

nd synthetic data causes this phenomenon. In this case, a robust 

SI denoising method should precisely remove anomalous spikes 

r perturbations from the spectral profile while retaining unique 

nd distinguishable features in the spectral dimension. While our 

olution with spectral noise distribution can facilitate subsequent 

oise reduction along the spectral dimension with adaptive tun- 

ng, this is also primarily limited by the generalization capability 

f the trained model learned spectral noise distribution estimates 

ver the actual dataset. However, it is worth mentioning that com- 

ared to existing methods, as presented in Fig. 13 , our method has 

reserved the details and complete spectral features of the images 

o the maximum extent under different levels of noise contamina- 

ion. One possible solution to alleviate the issue mentioned above 

s to adopt an unsupervised learning-based denoising framework, 

everaging the noise distribution prior learned from practical HSIs 

o perform customized recovery of degraded HSIs. In the future, 

e will make effort s to construct such an unsupervised learning 

ramework to mitigate this problem. 
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