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   Dear Editor,
Since  the  existing  hyperspectral  image  denoising  methods  suffer

from excessive or  incomplete denoising,  leading to information dis-
tortion and loss, this letter proposes a deep denoising network in the
frequency  domain,  termed  D2Net.  Our  motivation  stems  from  the
observation  that  images  from  different  hyperspectral  image  (HSI)
bands  share  the  same  structural  and  contextual  features  while  the
reflectance  variations  in  the  spectra  are  mainly  fallen  on  the  details
and textures. We design the D2Net in three steps: 1) spatial decom-
position, 2) spatial-spectral denoising, and 3) refined reconstruction.
It  achieves  multi-scale  feature  learning  without  information  loss  by
adopting  the  rigorous  symmetric  discrete  wavelet  transform (DWT)
and  inverse  discrete  wavelet  transform  (IDWT).  In  particular,  the
specific design for different frequency components ensures complete
noise  removal  and  preservation  of  fine  details.  Experiment  results
demonstrate that our D2Net can attain a promising denoising perfor-
mance.

Introduction: Due  to  various  unstable  factors  in  the  complex
imaging chain,  HSIs are always contaminated by noises,  which will
severely  degrade  the  visual  qualtiy  and  affect  their  further  analysis
and  subsequent  interpretations  [1],  [2].  Therefore,  removing  HSI
noise is of utmost significance for HSI exploitation.

Traditional  HSI  denoising  methods  commonly  employ  a  definite
model  such  as  low-rank  matrix  recovery  [3],  domain  transform [4],
sparse representation [5], [6], tensor decomposition [7], etc. Unfortu-
nately,  they  suffer  from  manual  parameterization  for  specific  noise
cases and befall complex optimization problems. With the benefit of
solid  nonlinear  representative  abilities  and  fewer  priors,  convolu-
tional  neural  networks  (CNN)-based  techniques  have  achieved
impressive success in image restoration [8]. However, every coin has
two sides. Few priors imply a large number of parameters, resulting
in  huge  redundant  calculations,  especially  with  high-dimensional
HSIs.  On  the  other  hand,  mainstream  CNN-based  denoising  appro-
aches typically follow either an encoder-decoder [9] or a high-resolu-
tion  (single-scale)  [10]  feature  processing  architecture.  The  former
achieves  extensive  contextual  feature  learning  by  upsampling  and
downsampling operations,  but  it  loses  fine  spatial  details,  making it
challenging  to  reconstruct  clean  HSIs  accurately.  The  latter  do  not
vary  the  spatial  resolution  and  the  limitation  of  the  receptive  field
makes such networks incapable of encoding contextual  information.
Furthermore,  due  to  a  neglect  of  the  intrinsic  HSI  spatial-spectral
properties,  these  methods  represent  quite  finite  denoising  perfor-
mance.  Therefore,  investigating a tailor-made denoising approach is
an  urgent  and challenging task,  which requires  efficiently  removing
HSI noises while carefully preserving the high-frequency details.

We have  observed  that  capturing  from the  same scene,  images  in
different  bands  show  strong  correlations.  As  evident  in Fig. 1 ,  they
share  the  same  structural  and  contextual  features,  which  are  also

called low-frequency features. On the other hand, the reflectance dif-
ference  between  bands  may  induce  by  details,  textures,  and  noises,
which  mainly  belong to  high-frequency features.  Motivated  by  this,
we  argue  that  denoising  HSIs  in  the  frequency  domain  can  achieve
better  results  and  propose  D2Net  (as  shown in Fig. 2 )  to  efficiently
and precisely restore a clean HSI. First, we replace common up-sam-
pling  and  down-sampling  operations  with  DWT/IDWT,  which  is
mathematically  strict  and  symmetric,  to  provide  rich  frequency  fea-
tures  for  domain  transformation  and  clean  HSI  reconstruction.  Sec-
ond, DWT/IDWT produces multi-scale features without any informa-
tion loss, enabling us to design sub-branches for denoising in differ-
ent  frequency  components.  In  particular,  we  propose  a  progressive
spatial-spectral  mixed  convolution  block  (PMCB)  to  protect  the
effective transfer of high-frequency information. Third, we deploy a
spatial-spectral  consistency  regularization  block  (SCRB)  to  explore
its coherence further and finely reconstruct the clean HSI. The exper-
imental results prove that the proposed method has a good trade-off
between efficiency and denoising performance.
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Fig. 2. The proposed D2Net framework for HSI denoising.
 

X,Y ∈
R(C×H×W)

Methodology: The goal  of  the HSI denoising task is  to recover a
clean  HSI X  from  a  noise-contaminated  HSI Y ,  where 

,  and C  presents  the  number  of  spectral  bands, H  and  W
describe their spatial scale.

1)  Spatial  decomposition:  As  aforementioned,  mainstream  CNN-
based  HSI  denoising  methods  easily  fail  in  recovering  spatial  and
spectral details.  On the contrary, denoising in the frequency domain
utilizing  strictly  symmetric  DWT/IDWT enables  multi-scale  feature
learning  without  information  loss,  alleviating  this  problem.  In  this
paper,  we  utilize  DWT  in  the  second  level  with  the Haar  wavelet
kernel  to  spatially  decompose  the  noisy  HSI Y  before  denoising  so
that the network can perform customized and accurate denoising for
different frequency components. It can be formulated as
 

YH(1), YH(2), YL(2) = DWT(DWT(Y)) (1)
YL(2) (B,1,C,H/2,W/2) YH(2) YH(1)

(B,3,C,H/4,W/4) 1 3
where  is  in  size  of ,  and   are  in
size  of , B  is  the  batch  size,  and   indicate  the
corresponding  number  of  wavelet  components.  Intuitively,  the
employed  DWT  can  derive  wavelet  subbands  in  multi-resolution,
allowing  multi-scale  feature  learning  and  benefiting  the  non-local
similarities  exploration  in  HSIs.  Besides,  DWT/IDWT  would  not
affect  the  end-to-end  training  of  our  network,  making  the  proposed
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Fig. 1. Examples  of  an  HSI  [1]  taken  from  the  PolyU  hyperspectral  face
database. Sample bands covering the visible range from 420 nm to 690 nm in
30 nm intervals.
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D2net simple and effective.

YH(1) YH(2)

YH(2)

2)  Spatial-spectral  denoising:  In  view of  noise  distribution  in  dif-
ferent  frequency  components  and  the  intrinsic  spatial  and  spectral
characteristics of HSIs, we design three subbranches to fulfil spatial-
spectral  denoising.  After  DWT,  the  low-frequency  components  of
HSIs  retain  more  structural  information  and  are  less  damaged  by
noises,  while  the  high-frequency  details  and  textures  are  unfortu-
nately  drowned  in  noises.  Accordingly,  we  infer  that  it  is  easier  to
remove noise in low-frequency, for which we deploy a simple multi-
layer  network  consisting  of  Conv3D+PReLU.  Conversely,  for  the
other  two  high-frequency  subbranches  in  different  resolutions,  we
design  the  PMCB to  exploit  inherent  spatial-spectral  properties  and
finely discriminate the detailed texture and noise of each band. Not-
ing  that  the  and   have  similar  information  patterns  in
high-frequency  but  are  in  different  resolutions,  we  utilize  a
DeConv3D+PReLU block to spatially amplify the  in twice. It
empowers recursively sharing subsequent parameters of spectral-spa-
tial  denoising  in  PMCB.  Concretely,  inspired  by  the  superiority  of
the information multi-distillation block (IMDB) proposed in [11], we
follow  its  idea  of  information  distillation  and  design  the  PMCB  as
illustrated in Fig. 3(a).  Here,  instead of  the general  convolution cal-
culation in IMDB, we develop a mixed convolution designed to ful-
fil comprehensive and efficient spatial-spectral feature learning. The
calculation in PMCB can be formulated as
 

f = Concat(ConvA(g),ConvB(g′),ConvC(g′′),ConvD(g′′′))

f̂ = CA( f )+g (2)
g, g′, g′′ g′′′

3×3×3
1×1×1

3×3×1

1×1×3

where  and  indicate the input features of each convolu-
tion as labeled in Fig. 3(a).  Concretely, ConvA with  kernel
and  ConvD  with  kernel  are  intuitive  3D  convolution.
Pseudo-3D  convolution  ConvB  in  the  kernel  size  of  is
employed  for  the  spatial  domain,  and  ConvC  in  the  kernel  size  of

 is  specific  for  the  spectral  domain.  Such  3D  convolutions
allow exploration of inherent spatial-spectral correlations with differ-
ent kernel size and the pseudo-3D convolutions purely concentrate on
extracting  features  in  the  specific  domain.  It  also  significantly
decreases the number of parameters and construct a more lightweight
progressive  feature  learning  architecture.  After  that,  a  feature  chan-
nel  attention (CA) block is  adding to explore the cross-channel  fea-
tures further and extract global information. Besides, we stack multi-
ple PMCBs to yield the greatest returns and boost the denoising per-
formance.

XH(1) XH(2) XL(2)
3)  Refined  reconstruction:  After  obtaining  the  denoising  compon-

ents ,  and  ,  we  utilize  IDWT  to  recomposite  the
denoising  HSI  into  the  original  resolution.  Furthermore,  to  preserve
spatial-spectral  consistency and promote the refine reconstruction,  a
regularization block is organized to model the spatial-spectral corre-
lations in the recovered scale. Combining ideas of dense connection
and  residual  learning,  as  shown  in Fig. 3 (b),  SCRB  utilizes  dense
shortcuts to merge features from different layers and a global resid-
ual  shortcut  to  enhance  the  denoising  performance.  The  pseudo-3D
convolution  mentioned  before  is  deployed  in  SCRB  to  ensure  effi-
cient  extraction  of  spatial-spectral  features  with  less  computational
overhead. Besides, the final convolution layer acts like a regulariza-

(1,1,1)tion  operator,  which  utilizes  the  kernel  to  further  integrate
features  from  previous  layers  and  regularize  the  final  output.  The
refined reconstruction can be formulated as
 

X = SCRB(IDWT(IDWT(XL(2), [XH(2),XH(1)]))). (3)
Experiments: We  organize  training  and  evaluation  of  the  pro-

posed  D2Net  via  mimicking  synthetic  Gaussian  noise  in  different
intensities  and  typically  mixed  noise  cases  on  the  ICVL hyperspec-
tral  dataset  (http://icvl.cs.bgu.ac.il/hyperspectral/).  To  fairly  assess-
ment, we chose a series of advanced denoising methods for compari-
son,  including  BM4D  [4],  TDL  [7],  GLF  [3],  HSID-CNN  [10],
QRNN3D  [9]  and  DSWN  [12].  We  employ  five  metrics  for  HSI
denoising  performance  evaluation,  inclusive  of  peak  signal-to-noise
ratio  (PSNR),  structure  similarity  (SSIM)  and  feature  similarity
(FSIM) for  spatial-based image quality  measurement,  spectral  angle
mapper  (SAM) for  spectral  fidelity  evaluation,  and  time-consuming
during testing per HSI.

σ = 70 σ
1) Quantitative comparisons:  As listed in Table 1,  where Cases 1,

2, 3 are: Gaussian noise intensity of , blind , mixed noise of
Gaussian noise and deadline noise, D2Net represents superior in the
majority  of  quantitative  metrics,  especially  the  spatial  quality  met-
rics. It indicates the superior flexibility of our proposed D2Net. How-
ever, it falls slightly (0.007) on the SAM metric behind the QRNN3D
in  the  complex  noise  case.  It  might  be  caused  by  the  fact  that  the
DWT/IDWT  are  conducted  only  in  the  spatial  domain  while
QRNN3D emphasis spectral features by recurrent. On the other hand,
specific designs in D2Net like PMCB and SCRB have greatly com-
pensated  for  the  gap  in  spatial-spectral  fidelity,  bringing  consider-
able  gains  involving  nearly  1dB  gains  in  PSNR  and  average  0.005
incomes in SSIM and FSIM, but a bit of sacrifice in speed (average
0.04 s slower than QRNN3D).
 

Table 1.  Quantitative Results on the ICVL Dataset. The best and the second
results are shown in red and blue, respectively.

Case Method ↑PSNR ↑SSIM ↑FSIM ↓SAM Time (s)

1

Noisy HSI 11.23 0.023 0.398 1.027 –
BM4D [4] 33.71 0.854 0.903 0.182 305.19
TDL [7] 36.92 0.910 0.945 0.099 47.32
GLF [3] 37.01 0.883 0.954 0.145 537.02

HSID-CNN [10] 36.42 0.923 0.948 0.099 5.71
QRNN3D [9] 38.30 0.938 0.951 0.094 0.86
DSWN [12] 37.34 0.946 0.953 0.105 1.01

D2Net 39.86 0.951 0.957 0.087 0.91

2

Noisy HSI 17.58 0.121 0.598 0.776 –
BM4D [4] 37.66 0.917 0.943 0.128 307.63
TDL [7] 40.44 0.948 0.968 0.069 50.52
GLF [3] 41.16 0.943 0.974 0.099 454.17

HSID-CNN [10] 39.02 0.950 0.968 0.080 5.82
QRNN3D [9] 41.65 0.965 0.972 0.076 0.89
DSWN [12] 40.77 0.968 0.974 0.095 1.03

D2Net 42.03 0.971 0.979 0.072 0.92

3

Noisy HSI 23.00 0.354 0.678 0.778 –
BM4D [4] 28.56 0.539 0.898 0.338 311.25
TDL [7] 34.12 0.906 0.901 0.110 41.96
GLF [3] 38.68 0.963 0.974 0.076 351.82

HSID-CNN [10] 36.76 0.933 0.964 0.088 5.86
QRNN3D [9] 39.32 0.955 0.972 0.054 0.84
DSWN [12] 38.17 0.945 0.942 0.159 1.06

D2Net 40.43 0.990 0.982 0.061 0.91
 
 

2)  Spatial  quality  comparisons: Fig. 4  illustrates  denoising  results
of  some representative scenes.  From the specifics  aspect,  taking the
second-row  results  in Fig. 4  as  an  example,  traditional  method  like
TDL has removed some noise but still obtain poor results; QRNN3D
shows a cleaner result but loses some details due to excessive denois-
ing; DSWN retains more high-frequency detail information, but fails
to  eliminate  high-frequency  noise.  In  contrast,  our  proposed  D2Net
obtains the best  denoising results with its  model superior,  achieving
high  fidelity  recovery  and  showing  results  much  clearer  with  fewer
artifacts  and  sharp  edges.  These  results  suggest  that  the  proposed
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Fig. 3. Illustration of  two main blocks  in  detail:  (a)  progressive  spatial-spec-
tral  mixed  convolution  block;  (b)  spatial-spectral  consistency  regularization
block.
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D2Net has a more robust capability to remove HSI noises.
3)  Spectral  fidelity  comparisons:  To  verify  the  superiority  of  our

method in spectral fidelity, we select one typical pixel in each noise
case  and  draw the  recovered  spectral  curves  of  some  representative
comparing  methods  in Fig. 4 .  Apparently,  compared  to  the  other
results, the recovered spectra curves of our D2Net are much closer to
the  reference.  It  indicates  that  our  method  accurately  eliminates  the
negative effect  of  noise in  the spectral  domain and further  confirms
the advantage of our D2Net in maintaining high spectral fidelity.

4)  Denoising  on  real  HSIs:  We  also  conduct  denoising  experi-
ments on the Indian Pines dataset to verify the effectiveness and flex-
ibility of our model. As Fig. 4 shown, our method still shows stable
performance in dealing with varying noisy levels, confirming its gen-
eralization ability in a real-world scenario. We also draw the spectral
curves of three typical pixels recovered by some leading methods in
Fig. 4. It is quite clear that the spectral curves recovered by our pro-
posed method are smoother after denoising, and their overall shapes
are more consistent with the original data.

5)  Ablation studies:  To verify  the  effectiveness  of  three blocks in
the  D2Net,  we  conduct  corresponding  ablation  studies  and  list  the
results in Table 2. Compared the first row with the second, replaced
down-sampling/up-sampling  convolution  (D/U)  with  DWT/IDWT,
denoising performance of the backbone model has improved without
extra  model  parameters  burden,  except  for  some  decreases  in  SAM
due to neglecting the spectral properties. Similarly, the effectiveness
of PMCB and SCRB also have been verified.

Conclusion: This  letter  insightfully  combines  a  multi-branch  net-
work  with  DWT/IDWT and  proposes  D2Net  to  achieve  fine  recov-
ery  of  noisy  HSIs.  On the  one  hand,  DWT/IDWT employed  in  this
work,  which  is  mathematically  strict  symmetric,  can  support  multi-
scale  feature  decomposition  and  recomposition  without  information
loss. On the other hand, HSI noise distribution varies in different fre-
quency  components,  which  inspired  us  to  design  tailor-made  sub-
branches  and  develop  PMCBs  to  achieve  accurate  detachment  of
noise  and  texture  details  for  high-frequency  sub-branches.  In  addi-
tion, we deploy an SCRB in refined reconstruction to further explore
its coherence in original resolution and enhance the spatial and spec-

tral  fidelity  of  the  recovered  HSIs.  Experiments  demonstrate  the
superiority  of  our  D2Net.  Such  an  idea  also  can  be  flexibly  trans-
ferred or promoted to other vision tasks for future insightful research,
like HSI reconstruction, super-resolution, and abnormal detection.
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Fig. 4. Illustration of comparison experiments on synthetic noises and real HSIs. Bounded by the black dotted line, the left side shows denoising results (involv-
ing zoom-in region and residual noise map) on the ICVL dataset and recovered spectral curves of the sampled pixel, where three rows from top to bottom are in
three noise cases; the right side presents denoising results on the Indian Pines dataset.
 

 

σ = 50Table 2.  Ablations on Remove Synthetic Gaussian Noise With  on
ICVl Dataset. Our D2Net is indicated by boldface.

No.
Components Metrics

DWT/IDWT PMCB SCRB ↑PSNR ↑SSIM ↓SAM Params (#)
1 D/U 36.84 0.967 0.095 0.40M

2 ✓ 37.61 0.970 0.113 0.40M
3 ✓ CB 38.04 0.971 0.091 0.84M
4 ✓ ✓ 38.77 0.978 0.086 0.98M
5 ✓ ✓ ✓ 39.44 0.980 0.079 0.99M
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