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Deep learning methods have been successfully used to extract deep features of many hyperspectral tasks. 

Multiple neural networks have been introduced in the classification of hyperspectral images, such as con- 

volutional neural network (CNN) and recurrent neural network (RNN). In this study, we offer a different 

perspective on addressing the hyperspectral pixel-level classification task. Most existing methods utilize 

complex models for this task, but the efficiency of these methods is often ignored. Based on this ob- 

servation, we propose an effective tiny model for spectral-spatial classification on hyperspectral images 

based on a single gate recurrent unit (GRU). In our approach, the core GRU can learn spectral correlation 

within a whole spectrum input, and the spatial information can be fused as the initial hidden state of the 

GRU. By this way, spectral and spatial features are calculated and expanded together in a single GRU. By 

comparing the different utilization patterns of RNN with a variety of spatial information fusion methods, 

our approach demonstrates a competitive advantage in both accuracy and efficiency. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Modern hyperspectral sensors can capture high spectral reso-

lution data up to hundreds of bands, allowing for the distinction

of very similar materials and objects. Rich spectral information

offers great potential for classification [1–4] . Hence, the analysis

of hyperspectral imagery has attracted broad attention in remote

sensing. Hyperspectral image (HSI) contains abundant spectral and

spatial information, which has been widely applied in many fields

such as agriculture, mining, environmental monitoring, land-cover

mapping [5–9] . 

HSI classification aims to identify each pixel vector into a

discrete set of specific classes. Many of the traditional approaches

have concentrated on processing spectral features. Some of them

exclusively employ the advantage of distinguishing the subtle

spectral difference to determine its class belonging, such as ran-

dom forest [10,11] , support vector machine (SVM) [12,13] , sparse

representation models [14–17] . However, these methods depend

on manual features and due to their limitations, they cannot

extract robust deep feature representations. 
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Unlike traditional classifiers, deep learning methods exploit

igh-level features which have the capability to acquire more

omplex structure representations [18–21] . In particular, convolu-

ional neural network (CNN) and recurrent neural network (RNN)

ave gained great success in a variety of computer vision tasks

22–24] . Taking CNN’s advantage of local connection and weight

haring properties, Wu et al. [25] directly deployed the spectral

eature of the original image data as an input vector and utilized

D-CNN for spectral HSI classification. But due to the kernel size

imitations, 1D-CNN can only learn the local spectral dependency.

 few works attempt to regard the spectral data as a sequence

26–30] , naturally, RNN becomes a candidate model by its ad-

antage of processing sequence data. Mou et al. [26] modeled

he spectra of hyperspectral pixel as a 1D sequence vector for

lassification, and it was shown that GRU in RNN is a better

hoice for HSI classification, rather than long short-term memory

LSTM) cell. The spectra was input to the RNN which was formed

f multiple GRUs, and each band is expanded and then delivered

n the corresponding GRU, and the number of GRUs in the entire

NN network equals to the number of bands of hyperspectral

ata. It acquired competitive performance and showed the huge

otential of deep recurrent networks for hyperspectral data anal-

sis. Nevertheless, it only took spectral information and the entire

etwork with hundreds of GRUs cost a heavy computation. 

Many researchers also have developed various ap-

roaches considering spatial information [31–37] . For instance,

https://doi.org/10.1016/j.neucom.2020.01.029
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Fig. 1. Illustration of RNN and the proposed single GRU. 
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Fig. 2. Illustration of GRU cell. 
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hen et al. [35] proposed a 3D-CNN network which directly

earns spectral-spatial features over both spatial and spectral axes,

ut its computational complexity is dramatically increased. In

ddition, a combination of CNN and RNN has been developed for

yperspectral image analysis. Xu et al. [36] proposed a unified

etwork with a bands-grouping based LSTM and MSCNN as the

pectral and spatial feature extractors. Mei et al [37] proposed

o concatenate a spatial attention CNN branch and a spectral

ttention bi-directional RNN branch to learn joint features. 

So far, these deep learning methods mentioned above have

ielded good results. Most of them are combinations of complex

odels, which can lead to heavy computation burdens, and the ef-

ciency of these models can be easily ignored. Accordingly, aiming

t the efficiency of computation, we design a simple and most ef-

ective method for the hyperspectral pixel-level classification. 

Typically, as shown in the RNN unfolding structure(see the left

art of Fig. 1 ), it can be seen that the number of internal units is

elated to the timestep, and the recurrent connection is between

he hidden units corresponding to each timestep. Inspired by the

NN and its various variants [28,36–38] , the RNN component

such as a GRU or LSTM unit) corresponding to each timestep can

e input to not only a single data but also a subsequence. There-

ore, we design multiple comparison experiments by inputting

ub-sequences of different lengths for timesteps. For the spectral

ector of HSI data, we figure out using a single GRU, which means

o input the entire spectral vector directly as one timestep, also

an make full use of spectral information. 

Unlike an RNN consisting of multiple GRUs, a single GRU does

ot carry the self-recurrent feature of RNN. From the characteris-

ics of its own internal structure, GRU is a fully connected layer

ith a gate mechanism. The update gate and reset gate play a role

o transform and select inputs. For the lengthy spectral vector in

SI data, this structure is tiny and effective in extracting spectral

iscriminative features. In addition, we also use the other input of

RU to capture the neighbor spatial information. The overall struc-

ure is shown in the right part of Fig. 1 . The contribution of this

ork can be summarized as follows: 

• We develop a tiny effective model for HSI spectral-spatial clas-

sification, which consists of only a single GRU. Our model ac-

quires competitive performance with fully exploiting spectral

and spatial features. 

• We propose a tiny structure to extract spectral features. Taking

the hyperspectral spectral vector as a 1D sequence, we utilize

the RNN to extract spectral features. Instead of inputting each

band as one timestep to the RNN which is formed of multiple

GRUs, considering the high correlations between the reflected

values of the neighboring bands and the integrated spectral

profile, the whole spectrum data is input as one timestep into

RNN which is formed of a single GRU. It greatly reduces the

computation burden of the entire network. 
• We design a novel way to fuse spatial information. As the

initial state of RNN can be a trainable variable, in this work, we

put spatial neighboring features as the initial state of the GRU

to training. By this way, the spectral and spatial information

are calculated and expanded in a single GRU. The experimental

result shows that the proposed tiny network is indeed effective.

. Preliminaries 

RNN has received extensive concern in modeling sequence data.

nlike feed-forward neural networks, RNN is called recurrent be-

ause of its recurrent hidden state, whose activation at each step

epends on the previous computations. RNN has a memory func-

ion, which can remember the information about what has been

alculated so far. 

The most commonly used type of RNN is the LSTM and GRU

rchitectures, which are explicitly designed to deal with vanishing

radients and efficiently capture long-term dependencies. These

wo have no difference of fundamental architecture with RNNs, but

hey use a different function to compute the hidden state. 

LSTM was first proposed in 1997 [39] and is the most widely

sed model in NLP today. The memory in LSTMs is called cells and

nd can be regarded as black boxes that take the previous state

 t−1 and current x t as input. Internally these cells decide what to

eep in (and what to erase from) memory. They use three gates to

ombine the previous state, the current memory and the input to

ontrol what information will be passed through. GRU (see Fig. 2 ),

rst proposed in 2014 [40] , is a simplified version of LSTM. Com-

ared with LSTM, GRU does not maintain a cell state C and uses

wo gates instead of three. GRU has fewer parameters and thus

ay train a bit faster or need less data to generalize. 
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Fig. 3. Illustration of three different strategies for the spectral data as the input of RNN. The top one shows the band by band strategy. The middle one illustrates a bands 

grouping strategy, and the last one is a special situation to the middle one, named all in one stategy. 
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A GRU has two gates, i.e. , a reset gate r t and an update gate z t :

r t = σ (W r · [ h t−1 , x t ]) , (1)

z t = σ (W z · [ h t−1 , x t ]) , (2)

where σ ( ·) denotes a logistic sigmoid function, W r and W z are

weight matrices. 

Intuitively, the reset gate determines how to combine the new

input with the previous memory, and it acts similar to the forget

and input gates of an LSTM. It decides what information to throw

away and what new information to add. The update gate defines

how much of the previous memory to keep around. If we set the

reset to all 1 and update gate to all 0, we again arrive at our plain

RNN model. The new hidden state is computed as: 

h t = (1 − z t ) ∗ h t−1 + z t ∗˜ h t , (3)

 h t = tanh (W · [ r t ∗ h t−1 , x t ]) , (4)

where tanh ( ·) is the hyperbolic tangent function, W is the weight

matrix. The new hidden state is also the output of GRU. 

3. Methodology 

3.1. Extracting spectral feature 

The data advantage of HSIs is spectral data that contain rich

object features, and numerous of hyperspectral imagery studies

focus on obtaining information from spectral data. In the hyper-

spectral data cube, spectral data consist of reflected values from

hundreds of narrow and continuous spectral bands, which are

one-dimensional ordered sequences. 
For a hyperspectral pixel z , the k th spectral band is denoted

s z k , and x ( k ) represents the input of k th time step in RNN. The

 th GRU cell in RNN receives the previous hidden state x (k −1) and

he current input x ( k ) and calculates the current state information.

hen the total number of bands is n , Eqs. (5) , (6) , (7) show the

nput of three strategies to extract spectral features: 

Band by band strategy: 

 

(1) , x (2) , . . . , x (n ) = [ z 1 , z 2 , . . . , z n ] . (5)

Bands grouping strategy: 

 

(1) = [ z 1 , z 2 , ..., z a ] , 

 

(2) = [ z a +1 , z a +2 , ..., z 2 a ] , 

· · ·
 

( n a ) = [ z n −a +1 , z n −a +2 , ..., z n ] . 

(6)

All in one strategy: 

 = [ z 1 , z 2 , . . . , z n ] . (7)

Referring to RNN first introduced in the HSI classification [26] ,

s illustrated in the top figure of Fig. 3 . Considering each band

s a timestep to input a GRU, the network consists of multiple

RUs which are cascaded to form RNN to learn spectral features.

e name it a band-by-band strategy, as in Eq. (5) . Each band is

on-linearly expressed, stored and selected by the GRU with its

ate mechanism, and then transmitted as the hidden state one by

ne in hundreds of GRUs. Finally, it outputs the hidden state of the

ast GRU that has conveyed information from all previous GRUs. In

his way, the RNN effectively captures the forward correlation in

he spectral data. However, for each pixel in the original HSI, the

pectral data is a profile, which imply that adjacent spectral bands

n the spectrum are correlated. Not only is forward association
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Fig. 4. Illustration of three strategies to fuse the spatial information. The top one sets another branch for spatial data and concatenates the outputs of two branches. The 

middle one concatenates the 1D spectral vector and the reshaped 1D spatial data as input. The last one fuses the spatial data as the initial state of GRU. 
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mportant, but also contextual information about spectral data

hould be noticed. 

A direct solution is a bands-grouping strategy, as shown in the

iddle plot of Fig. 3 . The spectral vector consisting of hundreds

f bands can be grouped according to their order. We divide the

ntire spectrum into n 
a bands-groups, as Eq. (6) . The relationship

etween adjacent bands in a group can be fully expressed in the

idden state and then transmitted into the next GRU. 

The advantage of this bands-grouping strategy is that each

imestep could concentrate on local context features extracted

rom a bands-group with a small wavelength range. Moreover, an-

ther advantage of this strategy is efficiency. The bands-grouping

trategy with fewer GRUs has much fewer parameters and greatly

educes the computational burden of the entire network. 

There is a special situation when a = n, which means that all

pectrum bands are only divided into one bands-group, we name it

he all-in-one strategy, as in Eq. (7) . In other words, we input the

ntire spectrum into an RNN with only one GRU in one timestep,

s shown in the bottom part of Fig. 3 . Unlike the bands-grouping

trategy focusing on local features in bands-group, the all-in-one

trategy takes the whole spectra of the target hyperspectral pixel

s the input to a GRU without breaking data continuity. Further-

ore, it can also capture features from global context information.

he gate mechanism of GRU here is independent of solving the

radient disappearance problem, but relies on the internal filtering

unction of the reset gate and update gate to play a role in. 
With the all-in-one strategy, the entire spectra maintain its in-

ernal spectral correlation and are fully expressed by the GRU. Be-

ides, its speed advantage is self-evident. 

.2. Fusing spatial information 

The spatial feature is a valuable complement to the spectral

ignatures. The spatial information of a target pixel in hyperspec-

ral data usually comes from its neighbor region. Principal com-

onent analysis (PCA) is commonly executed in the first step to

ap the data to an acceptable scale with a low information loss.

ext, to capture local spatial features, spatial information is col-

ected for each central pixel by dividing a neighboring region of

ize k × k × m , where k is the size of the adjacent region and

 is the number of principal components. After that, almost all

elevant spatial information is collected, and then we reshape the

patial data of this neighboring region into a 1D sequence, which

s mapped by a fully connected layer with ReLU activation function

nd awaits for subsequent processing. 

To fuse the spatial information, the first choice is to set another

ranch for spatial data (same as the spectral branch), and then

oncatenate the output of two branches in a new fully connected

ayer, and then add the softmax function to acquire the final la-

el. It is shown in the top plot of Fig. 4 . This two-branch strategy

tilizes two GRUs. 
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Fig. 5. Illustration of the pipeline of the proposed method. The core member of this model is a single GRU, it receives two parts of input. One is the spectral vector x spe 

from the origin HSI data. The other is the spatial vector h spa , which is obtained through firstly processing by PCA and then selecting and reshaping a suitable size of the 

neighboring region into a 1D sequence and finally mapping by a full connection layer. With the inner calculation in GRU, the spectral and spatial features are selected and 

fused, and then transmitted to the later fully connected layer. We get the final label by softmax function. 
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1 http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral _ Remote _ Sensing _ 

Scenes . 
Since spatial data have been reshaped into 1D, we have a

simple idea that we can directly concatenate the spatial data

and the spectral data into a 1D sequence as the input, shown in

the middle part of Fig. 4 . Subsequent calculations are performed

through the RNN with all in one strategy. The spatial and spectral

information are jointly developed in the feature space. However,

the problem with this strategy is that although the spatial and

spectral sequences in the new sequence are related to the target

hyperspectral pixels, the internal order of the spectra relates to the

wavelength of each band, the spatial data do not have sequen-

tial order. There is no ordered correlation between the two

subsequences. 

In the RNN, each GRU typically receives two parts of data,

including the input x t and the hidden state h t−1 passed by the

previous GRU. For the first GRU in the RNN, there is a special

parameter h 0 called the initial hidden state, usually set to zero.

If this parameter is set to other value, it also participates in the

internal calculation of the GRU and is passed backward. 

Inspired by this, when it comes to processing HSI data within a

single GRU, in addition to taking the spectral vector x spe as input,

we can also use the initial hidden state parameter to process spa-

tial information as h spa . It is shown in the bottom plot of Fig. 4 .

Both parts of the data participate in the internal calculation of

the GRU. In this way, spectral features and spatial features can be

captured simultaneously in only a single GRU. 

3.3. Pipeline 

The pipeline of this methodology is illustrated in Fig. 5 . Obvi-

ously, the core member of our model is the GRU. For every pixel

in HSI data, its spectral data is input as x spe directly. To make the

full use of spatial information, the origin HSI data is processed by

PCA to reduce the dimension, and then a neighbor region related

to the center pixel is acquired, and finally the selected region is de-

formed as 1D sequence and mapped to the fully connected layer to

obtain the spatial feature h spa . Utilizing the trainable initial hidden

state parameter in the GRU, the spatial feature h spa can be passed

into and participate in the calculation along with the input spectral

vector x spe . 

The reset gate r and update gate z in GRU are presented as

Eqs. (8) and (9) : 

r = σ ( W r · x spe + U r · h spa + b r ) , (8)

z = σ ( W z · x spe + U z · h spa + b z ) , (9)

 h = tanh 

(
W ˜ h 

· x spe + U ˜ h 
· (r ∗ h spa ) + b ˜ h 

)
, (10)
 out = (1 − z) ∗ h spa + z ∗˜ h , (11)

here σ ( ·) denotes a logistic sigmoid function, W r , W z , W ˜ h 
, U r , U z

nd U ˜ h 
are weight matrices, b r , b z and b ˜ h 

are bias vectors. tanh ( ·)
s the hyperbolic tangent function. x spe represents a 1 × b vector, b

quals to the number of spectral bands, the spatial neighbor region

s mapped as h spa via a fully connected layer. It is worth to men-

ion that the number of hidden layers of this GRU cell is no more

n adjustable parameter, but a fixed number, equaling to the size

f h spa . 

As Eq. (10) , ̃  h consists of two parts, one is to use the reset gate

 to store important information related to h spa , and the other is to

dd important information of x spe . All the memory of the GRU is

ade up of these two parts. Finally, the network needs to compute

he h out . As Eq. (11) , the update gate z is used. On the one hand,

s the first item, it determines how much spatial information in

 spa is retained. On the other hand, the second item indicates the

nformation needs to be forgotten, and updates the corresponding

ontent with ̃

 h . Then, h out is what to be collected in the memory
 

 and the initial hidden state h spa . After mapping through a fully

onnected layer with ReLU activation function, we get the final la-

el by softmax function. 

In summary, our model is exquisite and effective. Based on the

ata characteristics of HSI, its spectral features and spatial features

re extracted in a single GRU by fully exploiting the structure of

RU and its unique gating mechanism. Compared with other com-

lex and diverse models, our model has an advantage in efficiency

nd competitive results in classification performance. 

. Experimental results and analysis 

.1. Data description 

We choose three public available HSI classification datasets to

valuate the performance of the proposed model, including Pavia

enter dataset, Pavia University dataset and Indian Pines dataset. 1 

The Pavia Center dataset is gathered by reflective optics system

maging spectrometer ROSIS. This data set includes 102 spectral

ands after removing 13 noisy channels with 1096 × 715 pixels,

nd it presents 9 classes covering the center of Pavia. The false-

olor composition picture of the Pavia Center image and the corre-

ponding ground truth map are shown in Fig. 6 . The 10% samples

re set to the training set, and the rest are set to the testing set. 

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Fig. 6. False color image and ground-truth labels of the Pavia Center dataset. 

Fig. 7. False color image and ground-truth labels of the Pavia University dataset. 

Fig. 8. False color image and ground-truth labels of the Indian Pines dataset. 
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The Pavia University dataset is another dataset of urban area ac-

uired by ROSIS, the image consists of 103 spectral channels with

10 × 340 pixels covering 9 land cover categories. The false-color

omposition picture of the Pavia University image and the corre-

ponding ground truth map are shown in Fig. 7 . The 10% samples

re set to the training set, and the rest are set to the testing set. 

The third dataset is Indian Pine dataset [41] , which recording 16

rop categories by an airborne visible/infrared imaging spectrome-

er sensor over the Indian Pines agricultural site. It has 200 spec-

ral bands with 145 × 145 pixels. The false-color composition pic-

ure of the Indian Pine data and the corresponding ground truth

ap are shown in Fig. 8 . The 20% samples are set to the training

et, and the rest are set to the testing set. 
.2. Sensitivity analysis of proposed method 

Learning rate affects the learning steps during training. A too

mall value may cause a too slow convergence, and a too big one

ay lead to network oscillation. According to Fig. 9 , we choose

.0 0 05 from {0.01, 0.0 05, 0.0 01, 0.0 0 05, 0.0 0 03, 0.0 0 01} as the

ptimal one. It remains unchanged during the whole training

rocedure. 

Our model utilizes neighbor region to extract spatial informa-

ion, and its performance badly depends on the size of neighbor

egions. We select the patch size from {5 × 5, 7 × 7, 9 × 9,

1 × 11, 13 × 13, 15 × 15} with different number of principle

omponents to find the optimal size of neighbor regions. As shown
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Fig. 9. Illustration of loss with different learning rate. 
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in Fig. 10 , spatial patches with fewer PCs fail to get a higher ac-

curacy due to its poor information, but larger size of path will

cause the possibility of heavier computational expense and over-

smoothing phenomenon. Thus, the number of PCs is set as 3 and

the size of spatial patches is set as 13 to get a better classification

accuracy. 

The single GRU with spatial initial state we proposed can ex-

tract the joint spectral-spatial features, we use t-SNE method to

reduce its high dimension for the discriminative ability visualiza-

tion. As shown in Fig. 11 , 2D features are plotted after t-SNE, the

separability of different classes is poor, and samples from different

class are overlapped with each other. With the increase of itera-

tions in learning spectral-spatial features, different samples from

the same classes are gathered into several clusters, so it becomes

much easier to separate. 
Fig. 10. Illustration of spatial performance with different number of principle componen  

(c) Indian Pines dataset. 

Fig. 11. 2D feature visualization of the joint spectral-spatial features in feature space of t  

colors represent different classes. 100 samples are random chosen from each class to comp  

(c) the joint features trained with 20 0 0 iterations. 
ts and size of spatial patches. (a) Pavia Center dataset, (b) Pavia University dataset,

he single GRU via t-SNE method. Each points represents one sample, and different

ute the features. (a) raw features, (b) the joint features trained with 500 iterations,

.3. Classification results 

To evaluate effectiveness of the proposed model, we compare

t with different classification methods quantitatively and qual-

tatively. The contrastive methods are summarized as follows:

1) SVM with radial basis function kernel, (2) deep learning

ethod 2DCNN, (3) RNN with band-by-band strategy, (4) RNN

ith bands-grouping strategy, (5) RNN with all-in-one strategy, (6)

pectral-spatial GRU with two branches, (7) spectral-spatial GRU

ith concatenate input, and (8) spectral-spatial GRU with spatial

nitial state. 

Overall accuracy (OA), average accuracy (AA), and the kappa co-

fficient are used as the evaluation measurements for the com-

ared methods. The runtime represents the training duration, the

atch size is set to 64, and the training steps is set to 10,0 0 0. Be-

ides, for a fair comparison, we utilize the same training and test-

ng sets for all methods, and all algorithms are executed ten times,

nd the mean results are reported to reduce random selection ef-

ects. All the experiments are implemented with an NVIDIA RTX

080Ti GPU, tensorflow-gpu 1.9.0 with python 3.6. 

For the Pavia University dataset, as shown in the classification

aps with all labeled and unlabeled pixels in Fig. 12 and the re-

ults on testing dataset in Table 1 , our proposed method effectively

urpasses CNN and RNN and obtains better performance. No mat-

er it is a 2D CNN that only focuses on spatial information, or

n RNN that only extracts spectral information, the classification

esults are not good enough because of incomplete information.

NN has a relatively uniform classification map, but its accuracy

s worse than that of the network using spectral information. Al-

hough RNN has advantages in classification accuracy, due to the

ack of spatial distribution information of neighbor regions, the ef-

ects of individual categories are poor, such as 56.56% in band-

y-band strategy, 62.59% in bands-grouping strategy and 66.15% in

ll-in-one strategy. 
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Table 1 

Classification performance of different methods for the Pavia University dataset. 

Lable SVM CNN RNN(spectral) GRU(spectral-spatial) 

(band-by-band) (bands-grouping) (all-in-one) (two branch) (concat-input) (spatial initial state) 

1 89.91 93.58 87.13 91.57 94.43 91.25 95.09 97.10 

2 97.92 95.13 97.88 94.76 98.36 97.75 98.60 99.48 

3 69.31 67.67 63.17 48.89 69.89 89.41 86.42 88.41 

4 96.23 96.99 89.23 88.46 85.86 96.55 96.88 97.53 

5 97.85 99.09 99.34 99.25 99.59 99.42 99.91 99.75 

6 58.45 80.00 54.23 66.82 70.88 97.41 92.75 94.94 

7 73.26 78.36 57.64 86.13 72.51 93.23 88.22 96.65 

8 82.19 86.18 91.58 95.92 90.64 92.93 92.81 97.07 

9 94.14 96.60 99.64 99.88 98.01 97.42 98.47 99.76 

OA 88.30 88.18 87.06 88.36 89.77 95.70 95.86 98.09 

AA 84.36 87.74 82.25 85.74 86.90 95.04 94.35 96.52 

kappa 84.23 87.74 82.44 84.41 87.64 94.32 94.52 96.14 

Runtime(s) - 202.77 896.07 218.19 52.51 77.67 65.75 59.96 

Table 2 

Classification performance of different methods for the Pavia Center dataset. 

Lable SVM CNN RNN(spectral) GRU(spectral-spatial) 

(band-by-band) (bands-grouping) (all-in-one) (two branch) (concat-input) (spatial initial state) 

1 99.98 99.97 99.98 99.96 99.94 99.99 99.98 99.99 

2 95.20 92.78 97.68 90.89 88.55 96.46 98.08 97.28 

3 85.15 95.79 56.56 93.85 95.86 95.25 93.56 97.01 

4 53.74 89.32 77.36 62.59 66.15 85.10 88.00 99.08 

5 94.07 95.27 95.11 95.61 93.65 99.21 99.37 97.36 

6 55.08 87.20 96.99 97.81 98.17 97.86 97.29 97.75 

7 96.90 93.99 91.84 89.63 91.51 95.76 98.02 94.68 

8 97.15 99.12 99.53 99.43 99.35 99.89 99.64 99.55 

9 72.14 98.99 99.88 99.76 99.92 99.96 99.88 99.57 

OA 94.02 96.76 97.61 97.69 97.68 99.04 99.10 99.14 

AA 83.27 94.71 90.55 92.17 92.56 96.61 97.09 98.03 

kappa 91.52 96.83 96.62 96.74 96.72 98.64 98.73 98.78 

Runtime(s) - 183.22 827.25 197.27 44.34 79.64 63.94 53.73 
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Fig. 12. Visual results on the Pavia University dataset. (a) SVM, (b) 2D-CNN, (c) RNN 

with band-by-band strategy, (d) RNN with bands-grouping strategy, (e) RNN with 

all-in-one strategy, (f) spectral-spatial GRU with two branches, (g) spectral-spatial 

GRU with concatenate input, (h) spectral-spatial GRU with spatial initial state. 
Compared RNN within three input strategies, the results indi-

ate that taking all spectra as input is a better choice for this task

ince it does not break the inter-spectral correlations. Our method

RU with spatial initial state outperforms other methods and gets

he OA as 98.09%, AA as 96.52% and Kappa as 96.19%. And it costs

uch less time than the original band-by-band RNN and other

ethods. 

Fig. 13 and Table 2 present the classification maps with labeled

nd unlabeled pixels and the results of the Pavia Center dataset.

lthough methods like CNN or RNN learn higher-level features

hrough deep network, the difference between OA and AA demon-

trates that there are unbalanced and insufficiently results. The

esults of the three RNN strategies indicate that the results of dif-

erent forms of input and different numbers of GRUs are not much

ifference in classification accuracy, but the efficiency is greatly

mproved by the way extracting the spectral features with a single

RU. The single GRU with spatial initial state can adequately

ake full use of the entire spectral information, and corrects

any misclassified pixels caused by lacking information with the

rainable spatial priori as the GRU cell state. The proposed model

chieves a higher homogeneous result, specifically, OA, AA and

appa is improved to 99.80%, 96.95% and 99.41%, respectively. 

Different from the two datasets of urban areas mentioned

bove, the Indian Pine data set represents a crop area where

as more spatially homogeneous categories. Besides, it has fewer

nnotations and its labeled categories are quite unbalanced. Fig. 14

nd Table 3 report the classification results of labeled and unla-

eled pixels from the proposed method along with other methods

n Indian Pines dataset. SVM and CNN methods yield uniform

ut inferior results because of lack of spectral information. Only
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Fig. 13. Visual results on the Pavia Center dataset. (a) SVM, (b) 2D-CNN, (c) RNN with band-by-band strategy, (d) RNN with bands-grouping strategy, (e) RNN with all-in-one 

strategy, (f) spectral-spatial GRU with two branches, (g) spectral-spatial GRU with concatenate input, (h) spectral-spatial GRU with spatial initial state. 

Fig. 14. Visual results on the Pavia Center dataset. (a) SVM, (b) 2D-CNN, (c) RNN with band-by-band strategy, (d) RNN with bands-grouping strategy, (e) RNN with all-in-one 

strategy, (f) spectral-spatial GRU with two branches, (g) spectral-spatial GRU with concatenate input, (h) spectral-spatial GRU with spatial initial state. 
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spectral or spatial feature is insufficient for HSI classification. RNN

performs unfavorable results in a similar way, the classification

maps show uneven areas with many misclassification points, as

shown in the classification maps. It can be seen that our proposed

spectral-spatial GRU with spatial initial state achieves better per-

formance compared with other methods in terms of OA, AA and

Kappa and yields a cleaner classification map. 
The classification results of these three datasets show that our

roposed method, the single GRU with spatial initial state, exhibits

he best performance among all compared methods in all scenar-

os. The comparisons of the three input strategies of RNN show

hat the spectral characteristics can be fully expressed in the GRU’s

eature space by inputting the entire spectrum in a single GRU. All-

n-one strategy performs better and costs much less time when it
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Table 3 

Classification performance of different methods for the Indian Pines dataset. 

Lable SVM CNN RNN(spectral) GRU(spectral-spatial) 

(band-by-band) (bands-grouping) (all-in-one) (two branch) (concat-input) (spatial initial state) 

1 78.79 90.91 72.72 36.36 66.67 90.91 96.97 99.98 

2 85.91 89.30 76.90 76.91 89.60 92.90 92.50 93.50 

3 85.88 90.02 74.21 74.73 80.72 88.98 96.55 95.94 

4 74.09 76.51 72.29 84.34 74.46 83.73 83.13 92.77 

5 92.03 93.51 92.03 93.51 90.56 93.51 94.39 96.75 

6 95.69 98.04 97.45 90.99 96.09 98.82 99.41 99.41 

7 45.02 70.02 61.02 60.00 75.02 80.01 95.00 95.50 

8 96.12 97.31 99.40 99.70 98.80 99.10 99.40 99.40 

9 82.85 99.52 74.28 81.42 85.71 78.57 99.87 99.89 

10 75.76 96.62 77.53 69.31 74.89 92.36 96.33 92.07 

11 88.62 94.41 82.72 89.59 73.12 95.40 95.05 96.39 

12 84.85 85.34 73.07 75.48 76.20 83.89 88.94 93.51 

13 86.53 99.31 99.30 98.61 92.36 99.30 99.30 99.31 

14 96.84 98.87 96.84 95.59 96.16 98.64 98.75 99.09 

15 77.49 83.39 66.46 67.56 69.78 87.45 88.19 93.72 

16 90.91 86.36 95.45 96.97 95.45 96.97 99.98 98.48 

OA 82.95 93.05 86.57 87.32 88.76 93.73 95.14 96.33 

AA 83.96 90.62 80.17 80.19 81.22 91.29 95.25 96.21 

kappa 80.54 92.07 81.89 81.69 82.40 92.84 94.45 95.67 

Runtime(s) - 127.33 1525.61 124.48 43.80 75.08 67.48 60.96 
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omes to inter spectral correlations. The two-branch GRU learns

he spectral features and the spatial features separately, and it per-

orms worse than the other two learning the joint spectral-spatial

eatures in the same feature space. In all spectral-spatial strategies,

he one which regards spatial information as the initial state has

dvantage both in performance evaluation and training efficiency. 

. Conclusion 

In this study, a tiny effective model is proposed to extract

pectral-spatial features for hyperspectral image classification

ased on a single GRU. We utilize the superior of GRU that the

nitial state could be a trainable factor. Based on the similarity of

eighbor pixels in the spatial domain, we can learn spatial con-

extual features in spatial dimensions by adding spatial neighbor

nformation as the trainable initial state. Numerous inner spectral

orrelations in the continuous spectrum domain are extracted

ith an entire spectra data input. Take both spectral input and

patial prior, the GRU cell can learn a joint feature for pixel-wise

lassification and perform robustly. 

We design contrast experiments on different input modes in

RU of spectral information and multiple ways of fusing spatial

nformation. Experimental results above on three public datasets

how that our method not only outperforms other traditional and

eep learning methods but also extracts more homogeneous dis-

riminative feature representations. We will generalize our method

or other remote sensing applications, such as change detection, in

he future. 
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