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ABSTRACT

Deep neural networks, such as convolutional neural network-
s (CNNs) and recurrent neural networks (RNNs), have been
successfully used to extract deep features for many hyper-
spectral tasks. In this study, we propose an spectral-spatial
attention network for hyperspectral image classification. In
our method, RNN with attention can learn interspectral corre-
lations within a continuous spectrum, CNN with attention is
designed to focus on similar features between neighbor pixels
in spatial dimensions. Experimental results demonstrate that
our method can fully utilize spectral and spatial information
to obtain competitive performance.

Index Terms— Hyperspectal image classification, atten-
tion mechanism, RNN, CNN

1. INTRODUCTION

Hyperspectral images captured from land surface-observing
aircraft and satellites have become increasingly important in
environmental monitoring, urban planning, mining, defense,
and agriculture due to their rich spectral information [1, 2].
Hyperspectral imaging (HSI), also known as imaging spec-
troscopy, captures the electromagnetic energy that is reflected
or emitted from the same area over hundreds of narrow, con-
tiguous spectral bands from visible to middle infrared wave-
length ranges [3, 4]. Each pixel in a hyperspectral image is
composed of a vector of elements that measures spectral in-
formation as a function of wavelength, which is known as the
spectrum. Each spectral band represents a gray-scale image,
and all images make up a 3D hyperspectral cube, which caus-
es a small patch to become a large data cube. A hyperspectral
image can be construed as a 3D data structure with two spatial
axes that carry information on the location of objects and one
spectral axis that carry information on the objects’ chemical
composition.

Hyperspectral image classification, which assigns every
pixel vector to a certain set of classes, is one of the major
tasks in the analysis of hyperspectral images; it has received
much attention from researchers. Numerous traditional meth-
ods, such as support vector machine (SVM) [5] and k-nearest
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Fig. 1: Our framework for hyperspectral image classification.

neighbor (KNN) [4], have been proposed. However, these
approaches disregard the correlations among pixels in spatial
axes and cause a waste of spatial information. Thus, spectral-
spatial-based methods improve classification performance be-
cause they incorporate additional spatial information from a
hyperspectral image. For example, Li et al. [6] constructed a
family of generalized composite kernels by utilizing spectral
and spatial information from HSI data.

Deep learning algorithms have become key tools in mod-
ern hyperspectral image analysis due to their outstanding pre-
dictive power; they can extract more discriminative features
and achieve good performance than traditional shallow clas-
sifiers [7, 2]. Deep models, such as networks with 1D [8, 9],
2D, and 3D [10] convolutional layers, have been proposed for
hyperspectral data analysis.

Methods with a 1D network use spectra as the input and
learn features that capture spectral information only. Mou et
al. [8] proposed the use of recurrent neural networks (RNNs)
to model pixel spectra in a hyperspectral image as 1D se-
quences for classification, and they found that the modified
gated recurrent unit (GRU) outperforms traditional approach-
es and the baseline convolutional neural network (CNN). Giv-
en that spatial information has been proven useful in improv-
ing the interpretation of HSI classification results, the study
of classification models based on deep spectral-spatial fea-
tures has been promoted. For example, SSUN [11] combined
a spectral dimensional band grouping-based long short-term
memory (LSTM) model with 2D CNN for spatial features and
integrated the spectral finite element (FE), spatial FE, and
classifier training into a unified neural network. The result
showed that full use of spectral and spatial information can
considerably improve accuracy.

With the same purpose, we designed a spectral-spatial



network with an attention mechanism. The contribution of
this work can be summarized as follows: (1) We designed
a joint network with a spectral attention bi-directional RNN
branch and a spatial attention CNN branch to extract spectral-
spatial features for hyperspectral image classification. An at-
tention mechanism was used to emphasize meaningful fea-
tures along the two branches, as shown in Fig. 1. Our goal
was to increase representation power by using the attention
mechanism, namely, enhance the correlations between ad-
jacent spectral dimensions while focusing on important fea-
tures, and suppressing unnecessary ones. (2) A bi-directional
RNN with an attention mechanism was designed for spectral
information. For each pixel, a spectral vector was divided
into a set of single-ordered data and fed to a GRU one by
one. Additional attention weights strengthened the spectral
correlation between spectrum channels. (3) For spatial axes,
we added attention to 2D CNN and trained this model on the
image patch around the pixel. Compared with the average
consideration of each image region, the attention parameter
assigns a greater weight to the key parts to make the model
pay more attention.

2. METHODOLOGY

Two sections play crucial roles in our methodology; they are
a bidirectional RNN-based spectral attention feature learner
and a CNN-based spatial attention feature learner.

The attention mechanism, which become a vital part in
human perception, is based on a reasonable assumption that
human vision does not process an entire image at once and on-
ly focuses on selective parts of the entire visual space [12, 13].
Several attempts have been exerted to incorporate attention
processing into visual tasks, including hyperspectral image
classification.

In our work, attention is of much concern. For spectral
classification, considering that each pixel can be represent-
ed as a continuous spectral curve that contains rich spectrum
characters, we can focus on the inter-band relationship of fea-
tures by attention. In spatial dimensions, we regard spatial
features as complementary to spectral ones; this branch im-
proves the representation of interests and focus on the inter-
spatial relationships of features by exploiting spatial attention
to CNN. Then, we concatenate two branches and feed them
to the fully connected layers to learn high-level joint spectral-
spatial features and acquire a prediction class after a softmax
layer.

2.1. Attention with RNN for Spectral Classification

RNNs are popular architectures for modeling various sequen-
tial problems. They contain feedback loops that allow the
current output to depend on the current input and the previ-
ous inputs; therefore, they have a strong capability to capture
contextual information within a sequence. By considering all
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Fig. 2: Bi-RNN model with attention mechanism for Spectral
Classification.

spectra of a hyperspectral pixel as a sequence, we develop a
bi-RNN model, as illustrated in Fig. 2.

GRU is introduced to learn long-term dependencies and
alleviate the vanishing gradient problem, and it has fewer pa-
rameters than LSTM. In our RNN model, we use bi-RNN as
an encoder. Its input is a spectral vector of one hyperspectral
vector x, x = (x1, x2, . . . , xn), and the bidirectional hidden
vector is calculated as

−→
ht = f(

−→
Wxt +

−→
V ht−1 +

−→
b ), (1)

←−
ht = f(

←−
Wxt +

←−
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−→gt = concat[
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ht ,
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where t ranges from the first spectral band 1 to the last n
one, the coefficient matrices

←−
W ,
−→
W are from the input at the

present step,
−→
V is from the hidden state ht−1 at the previous

step,
←−
V is from ht+1 at the succeeding step, f is the nonlinear

activation of the hidden layer, and gt is the memory of the
input as the output of this encoder.

Compared with the traditional RNN model that treats the
input in the same manner, we add an attention layer to decode
different spectral information to learn many characters. Our
attention layer can be defined as follows:

eit = tanh(Wigt + Uihi + bi), (4)

αit = softmax(Wi
′eit + bi

′), (5)

yt = U [gt, α], (6)

where Wi, Ui,Wi
′ are transformation matrices and bi, bi′ are

bias terms. Output yt is the predicted label of pixel x.

2.2. Attention with CNN for Spatial Classification

Our CNN model aims to extract robust spatial features. The
dimensions of a hyperspectral image are reduced to a low-
dimensional subspace via principal component analysis (P-
CA), which can reduce the dimensionality of a dataset with
interrelated variables while retaining as much of the variation
in the dataset as possible. The tight relationships between a
target pixel and its neighbor regions are considered, and a s-
mall patch is created for every target pixel. With the addition



S
p

at
ia

l

Spatial

S
p

atia
l A

tte
n
tio

n

C
o

n
vo

lu
tio

n

P
o

o
lin

g

C
o

n
vo

lu
tio

n

P
o

o
lin

g

FC FCPCA

The first three component

Fig. 3: CNN model with attention mechanism for Spatial Classification.

of the attention mechanism, our CNN model can focus on the
primary meaningful features and ignore the rest.

The architecture is shown in Fig. 3. After PCA, for in-
stance, the first three components of the Pavia University
dataset are reserved because they have almost 99.3% infor-
mation. Around each pixel, we create a patch with a size of
k ∗ k ∗ 3 as a neighbor region. For each patch, the convolu-
tional layer uses a sliding window as a kernel to move across,
and it can locate similar features in this patch by calculating
the point-to-point inner product. The pooling layer selects
values to reduce the feature map dimensions. The kernels
of the convolutional layers are 5 ∗ 5, and the strides of the
max pooling layers are 2. As for the spatial attention layer,
instead of considering each region equally, it pays attention
to feature-related regions. With the previous feature map, we
generate the attention distributions α to a new feature map.
The fully connected layer FC owns 1, 024 units, and the last
FC’s unit number is equal to the classes. We obtain the final
result by using a softmax function.

In our method, the last step is concatenating the two
branches then co-training them, as shown in Fig. 1. If we
only use the spectral RNN model, the result will be uneven
due to the lack of spatial information; if we use the single
spatial CNN model, an unlabeled area may be incorrectly la-
beled due to neighbor information. The merge layer fuses and
balances the spatial and spectral information, and its result
has the largest diversity in class probability estimation.

3. EXPERIMENT RESULTS

To evaluate our method, we train and test it on two public hy-
perspectral image classification datasets, namely, the Pavia U-
niversity dataset and the Pavia Center dataset. Nine land cover
classes of urban areas are contained in them. The datasets are
split into training, validation, and test sets. To overcome the
class imbalance problem, we randomly select 100 samples of
each annotated class for training and 100 samples for valida-
tion instead of splitting them by an average percentage from
each class.

We compare our method with traditional advanced machine-
learning methods, such as KNN, linear SVM with radial basis
function kernel, CNN, RNN, RNN with attention (ARNN),

Table 1: Classification performance of different methods for
the Pavia University dataset. Bold indicates the best result.

Label KNN SVM RNN CNN ARNN ACNN SSAN
OA 84.48 84.43 91.2 89.20 96.54 92.61 99.54
AA 84.88 88.59 88.6 93.20 86.52 97.51 98.41

Kappa 83.0 79.94 89.3 85.91 90.90 82.01 99.12

Table 2: Classification performance of different methods for
the Pavia Center dataset. Bold indicates the best result.

Label KNN SVM RNN CNN ARNN ACNN SSAN
OA 92.5 93.05 92.3 86.20 99.47 96.38 99.64
AA 92.5 85.89 89.5 91.20 91.31 93.37 98.06

Kappa 91.6 90.18 91.4 68.91 98.41 94.83 98.92

and CNN with attention (ACNN). For a fair comparison, we
utilize the same training and testing datasets for all methods,
and all algorithms are executed five times; the average results
are reported to reduce random selection effects. Overall ac-
curacy (OA), average accuracy, and the kappa coefficient k
are used as the evaluation measurements for the compared
methods. The experimental results of the Pavia University
dataset are shown in Table RNum1, and the results of the
Pavia Center dataset are presented in Table RNum2. The
classification results of both datasets show that our proposed
method, SSAN, exhibits the best performance among all
compared methods in all scenarios.

The results indicate that the proposed method with the
attention mechanism in two branches is effective in hyper-
spectral image classification. The traditional methods, such
as SVM and KNN, demonstrate poor performance. Deep
learning methods, such as CNN and RNN, are effective be-
cause of their discriminative features. A comparison of RNN
and ARNN or CNN and ACNN indicates that the attention
mechanism plays an important role in our method. Within the
attention weights, CNN focuses on similar features between
neighbor pixels, and RNN learns interspectral correlations.
Better than a single CNN or RNN network, which only takes
spatial information or spectral curve features, CNN appears
to be more homogeneous and smoother than RNN, but RNN
performs better in terms of OA. Our fusion network combines
spatial and spectral dimensions and acquires well-balanced
results. We show the classification maps for our proposed
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Fig. 4: Visual results on the Pavia University dataset
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Fig. 5: Visual results on the Pavia Center dataset

method in Figs. 4 and 5.

4. CONCLUSION

In this study, a two-branch co-training method is proposed to
extract spectral-spatial features based on ARNN and ACN-
N for hyperspectral image classification. By adding attention
weights to CNN and RNN, we can learn numerous interspec-
tral correlations in the continuous spectrum domain and focus
on similar spatial features between neighbor pixels in spatial
dimensions. Analysis of experimental results on two datasets
shows that our method not only performs better than the other
methods but also extracts more homogeneous discriminative
feature representations by combining ACNN and ARNN. We
will generalize our method for other remote sensing applica-
tions, such as unmixing and change detection, in the future.
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