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ABSTRACT

Deep learning methods have been successfully used to extract
deep features for many hyperspectral tasks. In this study, we
propose a tiny effective model based on gate recurrent unit
(GRU) with spectral-spatial information for hyperspectral im-
age classification. In our method, the core GRU cell can learn
interspectral correlations within an entirely continuous spec-
trum input, and spatial information is the initial state of this
GRU cell as a priori. Experimental results demonstrate that
our method can fully utilize spectral and spatial information
to obtain competitive performance.

Index Terms— hyperspectral image classification, deep
learning, RNN

1. INTRODUCTION

Modern hyperspectral sensors can observe the characteristics
of hundreds of continuous observation bands throughout the
electromagnetic spectrum with high spectral resolution, mak-
ing it possible to study the chemical properties of scene mate-
rials remotely [1]. Hence, the analysis of hyperspectral im-
agery has attracted more and more attention in the remote
sensing. Hyperspectral images based on abundant spectral
and spatial information, have been widely applied in many
fields such as agriculture, mining, environmental monitoring,
land-cover mapping [2].

A hyperspectral image can be described as a 3D cube,
and in its three dimension structure, two of them belong to
the spatial dimension, where we can get spatial characteris-
tics mainly include low-level features, such as location and
distribution information, texture features. The other dimen-
sion is the spectral dimension, and its data, which consist of
the reflection values of hundreds of narrow, contiguous spec-
tral bands from visible to middle infrared wavelength ranges,
can be expressed as a continuous curve, which represents the
chemical composition of this pixel.

Hyperspectral image classification, which aims to iden-
tify each pixel vector into a discrete set of specific classes,
is one of hotspot topics in the remote sensing community.
Many methods have been proposed in the last few decades,
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for instance, some traditional approaches designed for dif-
ferent hand-crafted features, such as support vector machine
(SVM) or sparse representation classifier [3, 4]. However,
as the increase of spectral channel and spatial variability of
spectral signature, these methods cannot extract robust deep
feature representations due to their shallow properties.

To address the problem mentioned before, deep learning
methods, which seem the most prosperous machine learning
methods nowadays, have been proposed with a prominent s-
trategy. Unlike traditional classifiers, these methods exploit
feature representation learned exclusively for abundant data.
Deep convolutional neural networks (CNN) and deep recur-
rent neural networks (RNN) have gained great success in a
variety of computer vision tasks. Networks with one dimen-
sional [5], two dimensional [6], and three dimensional [7]
convolution layers or combination of CNN and RNN have
been developed for hyperspectral image analysis.

One dimensional approaches take spectra as input and
learn features that capture only spectral information. For
spectral feature classification with 1D CNNs, the spectral
feature of the original image data is directly deployed as an
input vector [8], as for RNN, from a sequential point of view,
Mou et. al [5] modeled pixel spectra as a 1D sequences for
classification. Methods that use two dimensional convolu-
tional layers are trained on the principle component bands of
image patches around the pixel in spatial domain, and three
dimensional networks which directly learn spatial-spectral
features over both spatial and spectral axes outperform ways
only based on spectral or spatial information [6]. There-
fore, many spectral-spatial methods have been developed that
additionally consider spatial correlation information.

In this paper, we proposed a novel structure for hyperspec-
tral image classification, as shown in Fig. 1. The contribution
of this work can be summarized as follows:

• We design a novel spatial-spectral deep learning-based
method, which is a joint framework with spectral and
spatial information, and the network can learn features
automatically.

• Take the hyperspectral spectral data as a 1D sequence,
we use gate recurrent unit (GRU) to extract spectral fea-
tures. Instead of the band by band strategy, consider-
ing the high correlations between the reflectance of the
neighboring bands, we feed the whole spectrum data



GRU
  Spatial information

Spectral information

Labels

RNN

ht

xi

ht-1

Fig. 1: Our framework for hyperspectral image classification.

into a GRU cell at one time.

• We capture the contexture dependency of adjacent pix-
els as the priori input of classification. In this work,
spatial neighboring information is the initial state of an
GRU unit. Our model can be exploited be build more
robust with spatial features.

2. RELATED WORKS

RNNs are much of concern for modeling sequential data. Un-
like feedforward neural networks, RNN are called recurrent
because of its recurrent hidden state, whose activation at each
step depends on the previous computations. RNNs have a
memory function, which can remember the information about
what has been calculated so far.

A simple RNN unit is shown in the left of Fig. 1, the in-
put xt and previous hidden state ht−1 are combined to form
a vector, which contains information on the current input and
previous inputs. And the output of this RNN unit is the new
hidden state, or the memory of the network. In other word-
s, h serves two purposes: the hidden state for the previous
sequence data as well as making a prediction.

The most commonly used type of RNNs are Long Short-
Term Memory (LSTM) or Gated Recurrent Unit (GRU) archi-
tectures, which are explicitly designed to deal with vanishing
gradients and efficiently at capturing long-term dependencies.
These two architectures do not have a fundamentally different
architecture from RNNs, but they use a different function to
compute the hidden state.

LSTMs were first proposed in 1997 [9] and are the per-
haps most widely used models in NLP today. The memory
in LSTMs are called cells and and can be regarded as black
boxes that take the previous state ht−1 and current xt as in-
put. Internally these cells decide what to keep in (and what to
erase from) memory. They use three gates to combine the pre-
vious state, the current memory and the input to control what
information will be passed through. It turns out that these
types of units are very efficient at capturing long-term depen-
dencies. GRUs (see Fig. 2), first proposed in 2014 [10], are
simplified versions of LSTMs. Compare with LSTM, GRU
does not maintain a cell state C and uses two gates instead of
three. GRUs have fewer parameters and thus may train a bit
faster or need less data to generalize.
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Fig. 2: Illustration of GRU cell.

A GRU has two gates, i.e., a reset gate rt and an update
gate zt :

zt = σ(Wz · [ht−1, xt]), (1)

rt = σ(Wr · [ht−1, xt]). (2)

Intuitively, the reset gate determines how to combine the new
input with the previous memory, and it acts similar to the for-
get and input gate of an LSTM. It decides what information
to throw away and what new information to add. The up-
date gate defines how much of the previous memory to keep
around. If we set the reset to all 1 and update gate to all 0 we
again arrive at our plain RNN model. The new hidden state is
compute as:

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t, (3)

h̃t = tanh(W · [rt ∗ ht−1, xt]). (4)

where σ(·) denotes a logistic sigmoid function, and tanh(·)
is the hyperbolic tangent function.

3. METHODOLOGY

Our proposed methodology is illustrated in Fig. 3. It is a tiny
but effective network.

Clearly, the core member in our model is the GRU cell.
For every single pixel in the original hyperspectral data, the
spectrum data actually is a continuous curve. From the point
of sequential view, a direct way is considering each channel
as a time step and input the GRUs channel by channel. But
this way would makes the whole network become too deep.
Our strategy is to input the whole spectrum data in one GRU
cell directly. Considering the indispensable spatial informa-
tion, we put the spatial characteristics of adjacent pixels as the
initial state of GRU, and it is equivalent to priori of the classi-
fication problem. Therefore, we combine spatial and spectral
information of hyperspectral image, train them at the same
time and get a sensational performance.

As we mentioned before, the value of each spectral chan-
nel in the spectrum is correlated. That is the reason why RNN
is cascaded by multiple GRUs to learn spectral features auto-
matically. For the same reason, we put forward a new way,
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Fig. 3: A illustration of the proposed method.

that is to input the whole spectrum directly to one GRU cell.
In a manner, a GRU cell is one kind of deformation of fully
connected layer, and the difference is that GRU can customize
the initial state and it can filter information internal with the
reset gate and update gate.

Spatial feature is a valuable complement to the spectral
signatures. Similar to the correlations across spectral dimen-
sion, there are also spatial dependencies between the neigh-
boring pixels in a hyperspectral image. This is due to the fact
that the material properties in a natural scene vary smoothly
in space and the presence of a material can increase or de-
crease the likelihood of the occurrence of another material in
its vicinity. For a certain pixel in the original hyperspectral
image, it is natural to consider its neighboring pixels to ex-
tract the spatial feature representation.

With hundreds of spectra bands, it is necessary to reduce
the spectral feature dimensionality before the spatial feature
representation. PCA is commonly executed in the first step
to map the data to an acceptable scale with a low information
loss. After PCA, for instance, the first three components of
the Pavia University dataset are reserved because they have al-
most 99.3% information. Then, in the second step, the spatial
information is collected by the use of a k×k×3 neighboring
region of every certain pixel in the original image. In 2D CN-
N, a common way is to choose a larger patch around the target
pixel and sliding window with a 3×3 or 5×5 kernel. Howev-
er, our method overleaps this and selects an neighbor region
with an appropriate size which contains almost all relevant s-
patial information. In order to meet the requirement of the
GRU initial state input, we transform the selected spatial in-
formation into one-dimensional data. It has been proved that
training the initial state as a variable can improve the model
performance.

4. EXPERIMENTAL RESULTS AND ANALYSIS

We train and test our method on two public hyperspectral
image classification datasets, namely, the Pavia University
dataset and the Pavia Center dataset. Both of them contain

Table 1: Classification performance of different methods for
the Pavia University dataset. Bold indicates the best result.

Label SVM CNN RNN RNN SPGRU
(2D) (band by band) (all)

OA 84.43 89.20 91.68 97.24 98.38
AA 88.59 92.20 86.68 88.51 93.82

Kappa 79.94 85.91 88.84 92.34 95.49

Table 2: Classification performance of different methods for
the Pavia Center dataset. Bold indicates the best result.

Label SVM CNN RNN RNN SPGRU
(2D) (band by band) (all)

OA 84.48 86.20 96.83 97.24 99.73
AA 84.88 91.20 91.12 91.73 95.89

Kappa 83.0 68.91 95.81 96.09 99.18

nine land cover classes of urban areas. To overcome the class
imbalance problem, We split these datasets into training, val-
idation, and test sets, and select 200 samples for training, 100
for validation of each labeled class randomly.

We compare our method with four state-of-the-art classifi-
cation methods, such as linear SVM with radial basis function
kernel, deep learning method 2DCNN, and RNN with differ-
ent input types like input band by band or entirely. For a fair
comparison, we utilize the same training and testing dataset-
s for all methods, and all algorithms are executed five times;
the average results are reported to reduce random selection ef-
fects. Overall accuracy (OA), average accuracy (AA), and the
kappa coefficient are used as the evaluation measurements for
the compared methods. The experimental results of the Pavia
University dataset are shown in Table 1, and the results of the
Pavia Center dataset are presented in Table 2. The classifica-
tion results of both datasets show that our proposed method,
GRU with spatial priori (SPGRU), exhibits the best perfor-
mance among all compared methods in all scenarios.

The results indicate that the proposed model is effective
in hyperspectral image classification. The traditional SVM
demonstrates poor performance. Deep learning methods,
such as CNN and RNN, are effective because of their dis-
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Fig. 4: Visual results on the Pavia University dataset. (a) gt,
(b) RNN (band by band), (c) RNN (all), (d) SPGRU.
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Fig. 5: Visual results on the Pavia Center dataset. (a) gt, (b)
RNN (band by band), (c) RNN (all), (d) SPGRU.

criminative features. A comparison of two types of RNN
indicates that the our strategy perform better when it comes
to interspectral correlations. Better than a single CNN or RN-
N network, which only takes spatial information or spectral
curve features, CNN appears to be more homogeneous and s-
moother than RNN, but RNN performs better in terms of OA.
Our network combines spatial and spectral dimensions and
acquires well-balanced results. We show the classification
maps for our proposed method in Figs. 4 and 5.

5. CONCLUSION

In this study, a tiny effective model is proposed to extract
spectral-spatial features based on a GRU cell for hyperspec-
tral image classification. By adding spatial information as
the trainable initial state with an entirely spectra data input,
we can learn spatial contextual features in spatial dimension-
s and numerous interspectral correlations in the continuous
spectrum domain. Analysis of experimental results on two
datasets shows that our method not only outperforms other
state-of-the-art methods but also extracts more homogeneous
discriminative feature representations. We will generalize our
method for other remote sensing applications, such as unmix-
ing and change detection, in the future.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical
machine translation,” arXiv preprint arXiv:1406.1078,
2014.


